Induced resistance to Puccinia sorghi and tar spot complex (Phyllachora maydis and others) in maize (Zea mays)

Federico Díaz-Morales, Carlos De León-García De Alba, Cristian Nava-Díaz, María Del Carmen Mendoza-Castillo

Abstract


In order to prove the efficiency of products reported to induce disease resistance in crops, in 2016 and 2017, trials were established in the Experimental Station of the Universidad Autónoma del Estado de México, Campus Toluca, with the commercial hybrid maize BG1384W. The products evaluated were Fosetyl-Al, AcibenzolarS-metil, Bacillus subtilis, Trifloxystrobin + Tebuconazole, Harpin Protein and Clothianidin + Bacillus firmus.  Efficiency of disease resistance inducers was studied in the control of common rust (Puccinia sorghi Schw.), and tar spot complex (Phyllachora maydis Maubl. and others), in two methods of application (soil and foliar application), and three dosages (recommended commercially, half of the recommended one, and recommended plus 50%) for each chemical. Agronomic data was recorded in a yield trial and disease severity for each disease. In 2016, severity was not affected by none of the products evaluated but Fosetyl-Al and Acibenzolar-S-metil increased grain yield. In 2017, Serenade decreased tar spot severity while FosetylAl increased grain yield.

Keywords


inducers; resistance; maize; FosetilAl; Bacillus subtilis

Full Text:

PDF (Español)

References


Andreu BA, Guevara GM, Wolski E, Daleo G, and Caldiz D. 2006. Enhancement of the natural disease resistance of potatoes by chemicals. Pest Management Science 62:162170.

Brannen PM, and Kenney DS. 1997. Kodiak®-a successful biological-control product for suppression of soil-borne plant pathogens of cotton. Journal of Industrial Microbiology and Biotechnology 19:169-171.

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT). 1985. Managing trials and reporting data for CIMMYT´s international maize testing program, Mexico, D.F. Disponible en línea: https://repository.cimmyt.org/xmlui/bitstream/handle/10883/697/13201.pdf

Centro Internacional de Mejoramiento de Maíz y Trigo (CIMMYT). 2005. Enfermedades del maíz. Una guía para su identificación en campo. Disponible en línea: https://repository.cimmyt.org/xmlui/bitstream/handle/10883/715/25905.pdf

Choudhary DK, Prakash A, and Johri BN. 2007. Induced systemic resistance (ISR) in plants: mechanism of action. Indian Journal of Microbiology 47:289-297.

Couretot L, Parisi L, Hirsch M, Suarez ML, Magnone G. y Ferraris G. 2013. Principales enfermedades del cultivo de maíz en las últimas campañas y su manejo. 7 p. Disponible en línea: https://inta.gob.ar/sites/default/files/scripttmp-inta_pergamino_principales_enfermedades_del_ cultivo_d.pdf

Dietrich R, Ploss K, and Heil M. 2005. Growth responses and fitness costs after induction of pathogen resistance depend on environmental conditions. Plant, Cell and Environment 28:211-222.

Dong H, Delaney TP Bauer DW, and Beer SV. 1999. Harpin induces disease resistance in Arabidopsis through the systemic acquired resistance pathway mediated by salicylic acid and the NIM1 gene. The Plant Journal 20(2):207-215. Disponible en línea: https://onlinelibrary.wiley.com/doi/ epdf/10.1046/j.1365-313x.1999.00595.x

Edreva A. 2004. A novel strategy for plant protection: Induced resistance. Journal of cell and Molecular Biology 3:6169. Disponible en línea: https://pdfs.semanticscholar.org/ a974/c0471debbddc5b0d53d70a59923d842e4f50.pdf

Eikemo H, Stensvand A, and Tronsmo AM. 2003. Induced resistance as a possible means to control diseases of strawberry caused by Phytophthora spp. Plant Disease 87(4):345350. Disponible en línea: https://apsjournals.apsnet.org/ doi/pdfplus/10.1094/PDIS.2003.87.4.345

Environmental Protection Agency (EPA). 2006. Bacillus subtilis Strain 713 (006479) Biopesticide. http://www. epa.gov/pesticides/biopesticides/ingredients/tech_docs/ tech_006479.html (consulta, mayo 2018)

European Food Safety Authority (EFSA). 2012. Conclusion on the peer review of the pesticide risk assessment of the active substance Bacillus firmus I-1582. EFSA Journal 10:2868.

Faize M, Faize L, Koike N, Ishizaka M, and Ishii H. 2004. Acibenzolars-methyl-induced resistance to Japanese pear scab is associated with potentiation of multiple defense responses. Phytopathology 94:604-612.

Guimarães BMA, Laranjeira D, and Barbosa RS. 2008. Physiological cost of induced resistance in cotton plants at different nitrogen levels. Summa Phytopathologica 34:338342.

Gorlach J, Volrath S, Knauf F, Hengy G, Beckhove U, Kogel KH, Oostendorp M, Staub T, Ward E, Kessmann H, and Ryals J. 1996. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 8:629-643.

Heil M, and Baldwin IT. 2002. Fitness costs of induced resistance: emerging experimental support for a slippery concept. Trends in Plant Science 7:61-67.

Hock J, Dittrich U, Renfro BL, and Kranz J. 1992. Sequential development of pathogens in the maze tarspot disease complex. Mycopathologia 117:157-161.

International Board for Plant Genetic Resources (IBPGR), 1991. Descriptors for maize. International Maize and Wheat Improvement Center. México City. 88p. Disponible en línea: https://www.bioversityinternational.org/fileadmin/user_upload/online_library/publications/pdfs/104.pdf

Kilian M, Steiner U, Krebs B, Junge H, Schmiedeknecht G, and Hain R. 2000. FZB24 Bacillus subtilis-mode of action of a microbial agent enhancing plant vitality. Pflanzenschutz-Nachrichten Bayer 53:72-93.

Köller W. 1992. Antifungal agents with target sites in sterol functions and biosynthesis. p.119-206. In: Koller W. Target Sites of Fungicide Action. CRC Press. Boca Raton, Florida. 328 p. Disponible en línea: https://books.google. com.mx/books?hl=es&lr=&id=Or1HDwAAQBAJ&oi= fnd&pg=PT183&dq=Antifungal+agents+with+target+si tes+in+sterol+functions+and+biosynthesis&ots=8UcS3 RlWfM&sig=bIHRbeUnQw9H9FMY8VYLDwSRluQ #v=onepage&q=Antifungal%20agents%20with%20target%20sites%20in%20sterol%20functions%20and%20 biosynthesis&f=false

López L. 1991. Cultivos herbáceos “Cereales”. Vol I. Ediciones Mundi-Prensa. España. 539 p.

Maget DR, and Peypoux F. 1994. Iturins, a special class of poreforming lipopeptides: biological and physicochemical properties. Toxicology 87:151-174.

Martínez SJ y Espinosa PN. 2014. Sugerencias para el control del “complejo mancha de asfalto” del maíz en la Frailesca, Chiapas. Folleto para productores No. 13. Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias. Centro de Investigación Regional Pacífico Sur. Campo experimental centro de Chiapas Ocozocoautla, Chiapas, México. 15 p. Disponible en línea: https://www.researchgate.net/publication/271586181_Sugerencias_para_el_ control_del_complejo_mancha_de_asfalto_del_maiz_en_ La_Frailesca_Chiapas DOI:10.13140/2.1.3799.5842

Márquez C, Castaño ZJ. 2007. Inducción de resistencia a sigatokas en plántulas de plátano Dominico-Hartón. Agronomía 15(2):49-57. Disponible en línea: https://kipdf.com/ induccion-de-resistencia-a-sigatokas-en-plantulas-de-platano-dominico-harton_5afd547d8ead0e41128b4633.html

Maublanc, A. 1904. Especes nouvelles de champignons inferiurs. Bulletin de la Société Mycologique de France. 20(2):70-74. Disponible en línea: https://ia800703. us.archive.org/0/items/mobot31753002525548/mobot31753002525548.pdf

Mogollón OA y Castaño ZJ. 2011. Efecto de inductores de resistencia en plántulas de plátano dominico hartón (Musa balbisiana AAB) contra Mycosphaerella spp. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales 35:463-472.

Quintero VC y Castaño ZJ. 2012. Evaluación de inductores de resistencia para el manejo de nematodos fitoparásitos en plántulas de plátano. Revista de la Academia Colombiana de Ciencias Exactas, Físicas y Naturales. 36:575-586.

Riveros AS. 2001. Moléculas activadoras de la inducción de resistencia, incorporadas en programas de agricultura sostenible. Manejo integrado de plagas 61: 4-11. Disponible en línea: www.sidalc.net/REPDOC/A2124E/A2124E.PDF

Rohilla R, Singh US, and Singh RL. 2001. Mode of action of Acibenzolar-S-methyl against sheath blight of rice, caused by Rhizoctonia solani Kühn. Pest Management. Science 58:63-69.

Saint G y López PMA. 1997. Producción de maíz y políticas agrícolas en Centro América y México CIMMYT. San José, Costa Rica. 39p. Disponible en línea: libcatalog.cimmyt.org/Download/cim/64574.pdf

SIAP-SAGARPA. 2014. Servicio de información agroalimentaria y pesca- Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Anuario Estadístico de la Producción Agrícola. https://datos.gob.mx/busca/dataset/datos-estadisticos-de-la-produccion-agricola-generada-a-nivel-nacional/resource/91fb244e-4f49-4c97-9f6deae06a4fdb74 (consultado, mayo 2018).

Schallmey M, Singh A, and Ward OP. 2004. Developments in the use of Bacillus species for industrial production. Canadian Journal of Microbiology 50:1-17.

Schreiber K, and Desveaux D. 2008. Message in a bottle: Chemical biology of induced resistance in plants. The Plant Pathology Journal 24:245-268.

Sillero JC, Rojas MM, Avila CM, and Rubiales D. 2012. Induction of systemic acquired resistance against rust, ascochyta blight and broomrape in faba bean by exogenous application of salicylic acid and benzothiadiazole. Crop Protection 34:65–69.

Uribelarrea M, Cárcova J, Otegui ME, and Westgate ME. 2002. Pollen production, pollination dynamics, and kernel set in maize. Crop Science 42:1910-1918.

Walters DR, Walsh D, Newton A, and Lyon G. 2005. Induced resistance for plant disease control: maximizing the efficacy of resistance elicitors. The American Phytopathological Society 95:1368-1373.

Walters DR, and Fountaine JM. 2009. Practical application of induced resistance to plant diseases: an appraisal of effectiveness under field conditions. Journal of Agricultural Science 147:523–535. Walters DR, Ratsep J, and Havis ND. 2013. Controlling crop diseases using induced resistance: Challenges for the future. Journal of Experimental Botany 64:1263-1280.

Wei Z, Laby R, Zumoff C, Bauer D, Ho SY, Collmer A, and Beer S. 1992. Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257:85-88.




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1807-6

Refbacks

  • There are currently no refbacks.