Biological, anaerobic and reductive soil disinfestation to the soil for control of harmful organisms to plants

José Alfredo Samaniego-Gaxiola, Yasmin Chew-Madinaveitia, Arturo Gaytán-Mascorro, Aurelio Pedroza-Sandoval

Abstract


The need to reduce the use of synthetic pesticides, lower costs, increase efficiency for the control of phytopathogens and to carry out organic agriculture, are reasons to improve and develop new control alternatives. The biological disinfestation (BSD), anaerobic (ASD) or reductive soil (RSD) are synonymous; in this review, the term RSD is used and the reason explained. The RSD is a method applied to the soil to reduce or eliminate bacteria, fungi, weeds, and nematodes that damage agricultural crops. This technique consists in adding a source of easily oxidized organic carbon such as crop residues, seeds, green manure, etc., cover with plastic and saturate or flood the soil. In this way, the carbon source decomposes in an anaerobic condition, the soil acidifies, the oxidation-reduction potential reaches reductive values    (-100 to -400 mV) and short-chain volatile fatty acids (VFAs) are generated. The VFAs are lethal for weeds and phytopathogens in the soil. In this essay the subject of the RSD, shows a historical approach, the principles that sustain it, proposals for improvement and evaluation of its variants are made, and practical applications are presented.

Keywords


Volatile fatty acids; flood; oxidationreduction potential; pH

Full Text:

PDF (Español)

References


Abbasi, P. A., Lazarovits, G., & Jabaji-Hare, S. (2009). Detection of high concentrations of organic acids in fish emulsion and their role in pathogen or disease suppression. Phytopathology, 99(3), 274-281. https://doi.org/10.1094/ PHYTO-99-3-0274

Alexander, M. (1961). Introduction to soil microbiology. John Wiley and Sons, Inc. 472 p.

Bailey, K. L., & Lazarovits, G. (2003). Suppressing soil-borne diseases with residue management and organic amendments. Soil and tillage research, 72(2), 169-180. https:// doi.org/10.1016/S0167 1987(03)00086-2

Barnett, A. J. G., & Duncan, R. E. B. (1953). The volatile fatty acids present in fresh and in fermented marrow-stem kale. Plant and Soil, 4(4), 370-376. https://doi.org/10.1007/ BF01435506

Bejarano-González, F. (Editor). (2017). Los Plaguicidas Altamente Peligrosos en México. Red de Acción sobre Plaguicidas y Alternativas en México, A. C. 358 p. https://www.researchgate.net/profile/Omar_Arellano-Aguilar/ publication/319515704_Los_Plaguicidas_Altamente_Peligrosos_en_Mexico/links/59b04922a6fdcc3f8889aca4/ Los-Plaguicidas-Altamente-Peligrosos-en-Mexico.pdf (consulta, Octubre 2018).

Blok, W. J., Lamers, J. G., Termorshuizen, A. J., & Bollen, G. J. (2000). Control of soilborne plant pathogens by incorporating fresh organic amendments followed by tarping. Phytopathology, 90(3), 253-259. https://apsjournals.apsnet.org/doi/pdfplus/10.1094/PHYTO.2000.90.3.253

Bonanomi, G., Antignani, V., Pane, C., & Scala, F. (2007). Suppression of soilborne fungal diseases with organic amendments. Journal of Plant Pathology, 89(3), 311-324. http://www.sipav.org/main/jpp/volumes/0307/030701.pdf

Butler, D. M., Kokalis-Burelle, N., Albano, J. P., McCollum, T. G., Muramoto, J., Shennan, C., & Rosskopf, E. N. (2014). Anaerobic soil disinfestation (ASD) combined with soil solarization as a methyl bromide alternative: vegetable crop performance and soil nutrient dynamics. Plant and soil, 378(1-2), 365-381. https://doi.org/10.1007/s11104014-2030-z

Cochrane, V. W. (1958). Physiology of fungi. John Wiley & Sons Inc.; London. 524 p.

Conn, K. L., Tenuta, M., & Lazarovits, G. (2005). Liquid swine manure can kill Verticillium dahliae microsclerotia in soil by volatile fatty acid, nitrous acid, and ammonia toxicity. Phytopathology, 95(1), 28-35. https://doi.org/10.1094/ PHYTO-95-0028

De la Cruz, E., Bravo, V., & Ramírez, F. (2018). Manual plaguicida de Centroamérica. Instituto Regional de Estudios en Sustancias Tóxicas, Universidad Nacional. Costa Rica. http://www.plaguicidasdecentroamerica.una.ac.cr/ (consulta, Octubre 2018).

Druzhinina, I. S., Seidl-Seiboth, V., Herrera-Estrella, A., Horwitz, B. A., Kenerley, C. M., Monte, E., Mukherjee, P. K., Zeilinger, S., Grigoriev, I. V., & Kubicek, C. P. (2011). Trichoderma: the genomics of opportunistic success. NATURE REVIEWS| MICROBIOLOGY, 9, 749-759. https:// doi.org/10.1038/nrmi cro2637

Eljounaidi, K., Lee, S. K., & Bae, H. (2016). Bacterial endophytes as potential biocontrol agents of vascular wilt diseases–review and future prospects. Biological Control, 103, 62-68. https://doi.org/10.1016/j.biocontrol.2016.07.013

Estupiñán-Herrera, C., Samaniego-Gaxiola, J. A., CuetoWong, C., y Balagurusamy, N. (2010). Inducción del cambio temporal del pH en la solución de suelos inundados y adicionados con fructosa y ácido sulfúrico. Pp. 710-714. Memoria de la XXII Semana Internacional de Agronomía FAZ-UJED. Noviembre 10-12. Gómez Palacio, Durango, México. 1277 p.

http://faz.ujed.mx/files/Memoria_XXII_ FAZ_UJED_2010.pdf

Goepfert, J. M., & Hicks, R. (1969). Effect of volatile fatty acids on Salmonella typhimurium. Journal of bacteriology, 97(2), 956-958. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC249784/pdf/jbacter00392-0512.pdf

Hayat, R., Ali, S., Amara, U., Khalid, R., & Ahmed, I. (2010). Soil beneficial bacteria and their role in plant growth promotion: a review. Annals of Microbiology, 60(4), 579-598. https://doi.org/10.1007/s13213-010-0117-1

He, Z. L., Rosskopf, E. N., Lin, Y., Powell, C. A., Hu, C., Iriarte, F., & Kokalis-Burelle, N. (2012). U.S. Patent No. US 20120015809 A1. https://patentimages.storage.googleapis.com/2c/6b/12/21ba1c21271ff4/US20120015809A1. pdf

Hewavitharana, S. S., & Mazzola, M. (2016). Carbon sourcedependent effects of anaerobic soil disinfestation on soil microbiome and suppression of Rhizoctonia solani AG-5 and Pratylenchus penetrans. Phytopathology, 106(9), 1015-1028. https://doi.org/10.1094/PHYTO-12-150329-R

Hewavitharana, S. S., Ruddell, D., & Mazzola, M. (2014). Carbon source dependent antifungal and nematicidal volatiles derived during anaerobic soil disinfestation. European journal of plant pathology, 140(1), 39-52. https://doi. org/10.1007/s10658-014-0442-5

Hrapovic, L., & Rowe, R. K. (2002). Intrinsic degradation of volatile fatty acids in laboratory-compacted clayey soil. Journal of contaminant hydrology, 58(3-4), 221-242. https://doi.org/10.1016/S0169-7722(02)00038-4

Huang, X., Liu, L., Wen, T., Zhu, R., Zhang, J., & Cai, Z. (2015). Illumina MiSeq investigations on the changes of microbial community in the Fusarium oxysporum f. sp. cubense infected soil during and after reductive soil disinfestation. Microbiological research, 181, 33-42. https:// doi.org/10.1016/j.micres.2015.08.004

Huang, X., Liu, L., Wen, T., Zhang, J., Wang, F., & Cai, Z. (2016). Changes in the soil microbial community after reductive soil disinfestation and cucumber seedling cultivation. Applied microbiology and biotechnology, 100(12), 5581-5593. https://doi.org/10.1007/s00253-016-7362-6

Ioannou, N. S. R. W., Schneider, R. W., & Grogan, R. G. (1977). Effect of flooding on the soil gas composition and the production of microsclerotia by Verticillium dahliae in the field. Phytopathology, 67, 651-656. https://www. apsnet.org/publications/phytopathology/backissues/ Documents/1977Articles/Phyto67n05_651.pdf

Katase, M., Kubo, C., Ushio, S., Ootsuka, E., Takeuchi, T., & Mizukubo, T. (2009). Nematicidal activity of volatile fatty acids generated from wheat bran in reductive soil disinfestation. Nematological Research, 39(2), 53 62. https://doi. org/10.3725/jjn.39.53

Kirchmann, H., & Lundvall, A. (1993). Relationship between N immobilization and volatile fatty acids in soil after application of pig and cattle slurry. Biology and fertility of soils, 15(3), 161-164. https://doi.org/10.1007/BF00361605

Lazarovits, G., Conn, K. L., Abbasi, P. A., & Tenuta, M. (2005). Understanding the mode of action of organic soil amendments provides the way for improved management of soilborne plant pathogens. Acta Horticulturae, 698, 215-224. https://doi.org/10.17660/ActaHortic.2005.698.29

Liu, L., Kong, J., Cui, H., Zhang, J., Wang, F., Cai, Z., & Huang, X. (2016). Relationships of decomposability and C/N ratio in different types of organic matter with suppression of Fusarium oxysporum and microbial communities during reductive soil disinfestation. Biological Control, 101, 103113. http://dx.doi.org/10.1016/j.biocontrol.2016.06.011

Liu, L., Chen, S., Zhao, J., Zhou, X., Wang, B., Li, Y., Zheng, G., Zhang, J., Cai, Z., & Huang, X. (2018). Watermelon planting is capable to restructure the soil microbiome that regulated by reductive soil disinfestation. Applied Soil Ecology, 129, 52-60.

https://doi.org/10.1016/j.apsoil.2018.05.004

Lynch, J. M. (1977). Phytotoxicity of acetic acid produced in the anaerobic decomposition of wheat straw. Journal of Applied Bacteriology, 42(1), 81-87. https://doi. org/10.1111/j.1365-2672.1977.tb00672.x

Lynch, J. M., Gunn, K. B., & Panting, L. M. (1980). On the concentration of acetic acid in straw and soil. Plant and soil, 56(1), 93-98. https://link.springer.com/article/10.1007/BF02197956

Meghvansi, M. K., & Varma, A. (Eds.). (2015). Organic amendments and soil suppressiveness in plant disease management (Vol. 46). Dordrecht: Springer, Switzerland. 531p.

Menzies, J. D. (1962). Effect of anaerobic fermentation in soil on survival of sclerotia of Verticillium dahliae (Abst). Phytopathology, 52(8), 743. http://www.apsnet.org/meetings/meetingarchives/Pages/default.aspx

Momma, N., Yamamoto, K., Simandi, P., & Shishido, M. (2006). Role of organic acids in the mechanisms of biological soil disinfestation (BSD). Journal of General Plant Pathology, 72(4), 247-252. https://doi.org/10.1007/ s10327-006-0274-z

Momma, N. (2008). Biological soil disinfestation (BSD) of soilborne pathogens and its possible mechanisms. Japan Agricultural Research Quarterly: JARQ, 42(1), 7-12. https://doi.org/10.6090/jarq.42.7

Momma, N., Momma, M., & Kobara, Y. (2010). Biological soil disinfestation using ethanol: effect on Fusarium oxysporum f. sp. lycopersici and soil microorganisms. Journal of general plant pathology, 76(5), 336-344. https://doi. org/10.1007/s10327-010-0252-3

Momma, N., Kobara, Y., & Momma, M. (2011). Fe2+ and Mn2+, potential agents to induce suppression of Fusarium oxysporum for biological soil disinfestation. Journal of General Plant Pathology, 77(6), 331-335. https://doi. org/10.1007/s10327-011-0336-8

Momma, N., Kobara, Y., Uematsu, S., Kita, N., & Shinmura, A. (2013). Development of biological soil disinfestations in Japan. Applied microbiology and biotechnology, 97(9), 3801-3809. https://doi.org/10.1007/s00253-013-4826-9

Okazaki, H. (1985). Volatile (s) from glucose-amended flooded soil influencing survival of Fusarium oxysporum f. sp. raphani. Japanese Journal of Phytopathology, 51(3), 264-271. https://www.jstage.jst.go.jp/article/jjphytopath1918/51/3/51_3_264/_pdf/-char/ja

Okazaki, H., & Nose, K. (1986). Acetic acid and n-butyric acid as causal agents of fungicidal activity of glucose-amended flooded soil. Japanese Journal of Phytopathology, 52(3), 384-393. https://www.jstage.jst.go.jp/article/jjphytopath1918/52/3/52_3_384/_pdf

Ponnamperuma, F. N. (1972). The chemistry of submerged soils. In Advances in agronomy (Vol. 24, pp. 29-96). Academic Press.

https://pdfs.semanticscholar.org/ed7f/45fc78cfd694ed285e17590058c6c aa2e62.pdf

Ríos-Castaño, P. (2017). Control de la podredumbre radical causada por Phytophthora cinnamomi en dehesas mediante biofumigación con Brassica spp. Tesis Doctoral. Córdoba España. Pp. 176. http://helvia.uco.es/bitstream/handle/10396/15073/2017000001669.pdf?sequence=1

Rosskopf, E. N., Burelle, N., Hong, J., Butler, D. M., Noling, J. W., He, Z., Booker, B., & Sances, F. (2014). Comparison of Anaerobic Soil Disinfestation and Drip-Applied Organic Acids for Raised-Bed Specialty Crop Production in Florida. Proc. VIIIth IS on Chemical and Non-Chemical Soil and Substrate Disinfestation. Acta Horticola, 1044:221228. Doi: 10.17660/ActaHortic.2014.1044.26

Samaniego-Gaxiola, J. A. (1994). Viabilidad de los esclerocios de Phymatotrichum omnivorum (Shear) Dugg. en suelos inundados y complementados con glucosa. Revista Mexicana de Fitopatología, 12(1), 125-133. http://rmf. smf.org.mx/#

Samaniego-Gaxiola, J. A. (2008). Efecto del pH en la sobrevivencia de esclerocios de Phymatotrichopsis omnivora Dugg Hennebert II expuestos a Tilt y Trichoderma sp. Revista Mexicana de Fitopatología, 26, (1) 32-39. http:// www.redalyc.org/html/612/61226106/

Samaniego Gaxiola, J. A., Ordóñez-Meléndez, H. J., Pedroza Sandoval, A., & Cueto-Wong, C. (2010). Relationship between the drying of the sclerotia of Phymatotrichopsis omnivora and its survival. Revista Mexicana de Micología, 32(1), 49-58. http://www.redalyc.org/ pdf/883/88319899006.pdf

Samaniego-Gaxiola, J. A. (2013). Supervivencia de los esclerocios de Phymatotrichopsis omnivora en función del pH in vitro. Revista Mexicana de Ciencias Agrícolas, 4(3), 337-351. http://www.redalyc.org/service/redalyc/downloadPdf/2631/263127575001/1

Samaniego-Gaxiola, J. A., & Balagurusamy, N. (2013). Survival of soil-borne fungus Phymatotrichopsis omnivora after exposure to volatile fatty acids. Journal of general plant pathology, 79(2), 105-109. https://link.springer.com/article/10.1007/s10327-013-0436-8

Samaniego-Gaxiola, J. A., & Pedroza-Sandoval, A. (2013). Usos potenciales de los ácidos grasos volátiles en suelo, agua y aire. Terra Latinoamericana, 31(2), 155-163. http://www.scielo.org.mx/scielo.php?script=sci_arttext&p id=S0187-57792013000300155

Samaniego-Gaxiola, J. A., Pedroza-Sandoval, A., Chew-Madinaveitia, Y., & Gaytán-Mascorro A. (2018). Reductive disinfestation, desiccation and Trichoderma harzianum to control Phymatotrichopsis omnivora in pecan tree nursery. Revista Mexicana de Fitopatología, (sometido para publicación).

Santoyo, G., Moreno-Hagelsieb, G., del Carmen Orozco-Mosqueda, M., & Glick, B. R. (2016). Plant growth-promoting bacterial endophytes. Microbiological research, 183, 9299. https://doi.org/10.1016/j.micres.2015.11.008

Serrano-Pérez, P., Rosskopf, E., De Santiago, A., & del Carmen Rodríguez-Molina, M. (2017). Anaerobic soil disinfestation reduces survival and infectivity of Phytophthora nicotianae chlamydospores in pepper. Scientia horticulturae, 215, 38-48. http://dx.doi.org/10.1016/j.scienta.2016.12.003

Shennan C, Muramoto J, Lamers J, Mazzola M, Rosskopf EN, Kokalis-Burelle N, Momma N, Butler DM, and Kobara Y. (2014). Anaerobic soil disinfestation for soil borne disease control in strawberry and vegetable systems: Current knowledge and future directions. Acta Hortic. 1044:165-175. https://doi.org/10.17660/ActaHortic.2014.1044.20

Shinmura, A., Sakamoto, N., & Abe, H. (1999). Control of Fusarium root rot of Welsh onion by soil reduction. (Abstract in Japanese). Annals of the Phytopathological Society of Japan, 65(3), 352-353. https://ci.nii.ac.jp/els/contents110002733276.pdf?id=ART0003023797

Shrestha, U., Ownley, B. H., Rosskopf, E. N., Dee, M. E., & Butler, D. M. (2013). Optimization of amendment C: N ratio in anaerobic soil disinfestation for control of Sclerotium rolfsii. In Proceedings of Annual International Research Conference on Methyl Bromide Alternatives and Emissions Reductions, San Diego, CA (pp. 14-1).

Shrestha, U., Augé, R. M., & Butler, D. M. (2016). A MetaAnalysis of the Impact of Anaerobic Soil Disinfestation on Pest Suppression and Yield of Horticultural Crops. Frontiers in plant science, 7, article 1254, 1-20. https://doi. org/10.3389/fpls.2016.01254

Siddiquee, S., Cheong, B. E., Taslima, K., Kausar, H., & Hasan, M. M. (2012). Separation and identification of volatile compounds from liquid cultures of Trichoderma harzianum by GC-MS using three different capillary columns. Journal of chromatographic science, 50(4), 358367. https://doi.org/10.1093/chromsci/bms012

Stanier, R. Y., Doudoroff, M., y Adelberg, E. A. (1977). Microgiología. Aguilar. España. 932 p.

Stover, R. H. (1955). Flood-fallowing for eradication of Fusarium oxysporum f. cubense: III. Effect of oxygen on fungus survival. Soil Science, 80(5), 397-412. https://journals.lww.com/soilsci/Citation/1955/11000/FLOOD_FALLOWING_FOR_ERADICATION_OF_Fusarium.7.aspx

Tenuta, M., & Lazarovits, G. (2002). Ammonia and nitrous acid from nitrogenous amendments kill the microsclerotia of Verticillium dahliae. Phytopathology, 92(3), 255264. https://apsjournals.apsnet.org/doi/pdfplus/10.1094/PHYTO.2002.92.3.255

Tenuta, M., Conn, K. L., & Lazarovits, G. (2002). Volatile fatty acids in liquid swine manure can kill microsclerotia of Verticillium dahliae. Phytopathology, 92(5), 548552. https://apsjournals.apsnet.org/doi/pdf/10.1094/ PHYTO.2002.92.5.548

Ueki, A., Takehara, T., Ishioka, G., Kaku, N., & Ueki, K. (2017). Degradation of the fungal cell wall by clostridial strains isolated from soil subjected to biological soil disinfestation and biocontrol of Fusarium wilt disease of spinach. Applied microbiology and biotechnology, 101(22), 8267-8277. https://doi.org/10.1007/s00253-017-8543-7

Ueki, A., Kaku, N., & Ueki, K. (2018). Role of anaerobic bacteria in biological soil disinfestation for elimination of soil-borne plant pathogens in agriculture. Applied microbiology and biotechnology, 102 (15), 6309–6318. https:// doi.org/10.1007/s00253-018-9119-x

van Agtmaal, M., van Os, G. J., Hol, W. G., Hundscheid, M. P., Runia, W. T., Hordijk, C. A., & de Boer, W. (2015). Legacy effects of anaerobic soil disinfestation on soil bacterial community composition and production of pathogensuppressing volatiles. Frontiers in microbiology, 6, article 701, 1-12. https://doi.org/10.3389/fmicb.2015.00701

Yossen, V., Zumelzu, G., Gasoni, L., & Kobayashi, K. (2008). Effect of soil reductive sterilization on Fusarium wilt in greenhouse carnation in Córdoba, Argentina. Australasian Plant Pathology, 37(5), 520-522. https://doi.org/10.1071/ AP08039




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1810-1

Refbacks

  • There are currently no refbacks.