Determination of chitin in postharvest fungi and chitinases in fruit of papaya “Maradol”

Jesús Armando Lucas-Bautista, Silvia Bautista-Baños, Rosa Isela Ventura-Aguilar, Marlenne Gómez-Ramírez

Abstract


Chitin is a biopolymer synthesized that conforms the cell wall of filamentous fungi and it is degraded by chitinases, which hydrolyze their ?-1,4 bonds. The papaya fruit is affected by fungi that cause losses in storage. For their control, the detection must be fast and timely; in this sense, biosensors could be an option when recognizing the analyte that is involved with their presence, for example, as chitin and chitinases. In this work, the chitin obtained from phytopathogenic fungi that affects the papaya was quantified obtaining statistically significant values (p?0.05) of 13 (Alternaria alternata) and 37% (Penicillium sp.) of chitin from its total biomass; likewise, the content of chitinases present in the fruit’s peel was determined in four stages of maturity. The values were significantly different (p?0.05) from 12473 (0-25% surface yellow color) to 15514 (100 % yellow color) units of quitinase g-1 in the frozen samples and from 21085 (0% yellow color) to 29457 (25% yellow color) units of quitinase g-1 in lyophilized samples. These values are part of a first stage of recognition of biological indicators for the design of a biosensor for application in papaya.


Keywords


Carica papaya L; ripening; biosensors; indicators; enzyme

Full Text:

PDF (Español)

References


Arbia W, Arbia L, Adour L and Amrane A. 2013. Chitin extraction from crustacean shells using biological methods–a review. Food Technology and Biotechnology 51: 12-25. https://search.proquest.com/docview/1436089273?pqorigsite=gscholar

Ayala AA, Serna L y Mosquera E. 2010. Liofilización de pitahaya amarilla (Selenicereus megalanthus). Vitae 17: 121-127. https://www.redalyc.org/articulo.oa?id=169815396002

Bautista-Baños S, Sivakumar D, Bello-Pérez A, VillanuevaArce R and Hernández-López M. 2013. A review of the management alternatives for controlling fungi on papaya fruit during the postharvest supply chain. Crop Protection 49: 8-20. https://doi.org/10.1016/j.cropro.2013.02.011

Blumenthal HJ and Roseman S. 1957. Quantitative estimation of chitin in fungi. Journal of Bacteriology 74: 222-224. https://jb.asm.org/content/jb/74/2/222.full.pdf

Bryant JP and Julkunen-Tiitto R. 1995. Ontogenic development of chemical defense by seedling resin birch: energy cost of defense production. Journal of Chemical Ecology 21: 883-896. https://doi.org/10.1007/BF02033796

Glibota GS, Garro OA y Judis MA. 2000. Actividad proteolítica de restos del fruto de Carica papaya. Comunicaciones Científicas y Tecnológicas-UNNE (Argentina) 4p. http://www.revistacyt.unne.edu.ar/unnevieja/Web/cyt/ cyt/2000/8_exactas/e_pdf/e_022.pdf

Gómez-Ramírez M, Rojas-Avelizapa LI and Cruz-Camarillo R. 2001. The chitinase of Bacillus thuringiensis. Pp: 273282. In: Muzzarelli RAA (ed.). Chitin Enzymology. Atec, Ed. Italy. 614p.

Guédez C, Cañizalez L, Avendaño L, Scorza J, Castillo C, Olivar R, Méndez Y y Sánchez L. 2014. Actividad antifúngica del aceite esencial de naranja (Citrus sinensis L.) sobre hongos postcosecha en frutos de lechosa (Carica papaya L.). Revista de la Sociedad Venezolana de Microbiología 34: 81-85. https://www.redalyc.org/articulo. oa?id=199437912007

Hamid R, Khan MA, Ahmad M, Ahmad MM, Abdin MZ, Musarrat J and Javed S. 2013. Chitinases: an update. Journal of Pharmacy & Bioallied Sciences 5: 21-29. https://doi. org/10.4103/0975-7406.106559

Khaledian S, Nikkhah M, Shams-Bakhsh M and Hoseinzadeh S. 2017. A sensitive biosensor based on gold nanoparticles to detect Ralstonia solanacearum in soil. Journal of General Plant Pathology 83: 231-239. https://doi.org/10.1007/ s10327-017-0721-z

Kumar M, Brar A, Yadav M, Chawade A, Vivekanand V and Pareek N. 2018. Chitinases—Potential candidates for enhanced plant resistance towards fungal pathogens. Agriculture 8: 88. https://doi.org/10.3390/agriculture8070088

Kumaresapillai N, Basha RA and Sathish R. 2011. Production and evaluation of chitosan from Aspergillus niger MTCC strains. Iranian Journal of Pharmaceutical Research 10: 553-558. https://www.ncbi.nlm.nih.gov/pmc/articles/ PMC3813029/

Maghsoodi V, Razavi J and Yaghmaei S. 2009. Production of chitosan by submerged fermentation from Aspergillus niger. Scientia Iranica. Transaction C, Chemistry, Chemical Engineering 16: 145-148. https://www.sid.ir/en/journal/ ViewPaper.aspx?ID=164842

Pinzón-Gutiérrez YA, Bustamante SL y Buitrago-Hurtado G. 2013. Diagnóstico molecular diferencial Colletotrichum gloeosporioides y Fusarium oxysporum en ñame (Dioscorea sp.). Revista Colombiana de Biotecnología 15: 52-60. http://bdigital.unal.edu.co/37763/

Ramírez MÁ, Rodríguez AT, Alfonso L y Peniche C. 2010. La quitina y sus derivados, biopolímeros con potencialidades de aplicación agrícola. Biotecnología Aplicada 27: 270276. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid =S1027-28522010000400002

Sánchez-García C, Cruz-Martín M, Alvarado-Capó Y, Rojas L, Leiva-Mora M, Acosta-Suarez M y Roque B. 2012. Detección y cuantificación de quitinasa en hojas de banano (Musa spp.) inoculadas con Mycosphaerella fijiensis. Biotecnología Vegetal 12: 119-124. https://revista.ibp.co.cu/ index.php/BV/article/view/163

Seidl V. 2008. Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biology Reviews 22: 36-42. https://doi. org/10.1016/j.fbr.2008.03.002

Wandermur G, Rodrigues D, Allil R, Queiroz V, Peixoto R, Werneck M and Miguel M. 2014. Plastic optical fiber-based biosensor platform for rapid cell detection. Biosensors and Bioelectronics 54: 661-666. https://doi.org/10.1016/j. bios.2013.11.030

Xu J, Xu X, Tian L, Wang G, Zhang X, Wang X and Guo W. 2016. Discovery and identification of candidate genes from the chitinase gene family for Verticillium dahliae resistance in cotton. Scientific Reports 6: 1-12. https://doi. org/10.1038/srep29022

Yabuki M, Mizushina K, Amatatsu T, Ando A, Jujii T, Shimada M and Yamashita M. 1986. Purification and characterization of chitinase and chitobiase produced by Aeromonas hydrophila subsp. Anaerogene A52. The Journal of General and Applied Microbiology 32: 25-38. https://doi. org/10.2323/jgam.32.25

Yan R, Hou J, Ding D, Guan W, Wang C, Wu Z and Li M. 2008. In vitro antifungal activity and mechanism of action of chitinase against four plant pathogenic fungi. Journal of Basic Microbiology 48: 293-301. https://doi.org/10.1002/ jobm.200700392




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1902-3

Refbacks

  • There are currently no refbacks.