Streptomyces as in vitro biocontrol agents of Exserohilum rostratum and producers of plant growth promoting substances

Darío Enrique García-Rojas, Pedro Vázquez-Vázquez, Daniel Alonso Pérez-Corral, María Fernanda Ruiz-Cisneros, David Ignacio Berlanga-Reyes, José de Jesús Ornelas-Paz, Carlos Horacio Acosta-Muñiz, Claudio Rios-Velasco, Miguel Ángel Salas-Marina, Eduardo Osorio-Hernández

Abstract


The aim of the study was to evaluate the antifungal activity of Streptomyces spp. against Exserohilum rostratum strain CIAD_CP01 (synonym Setosphaeria rostrata), as well as their ability to produce plant growth promoting substances. The antagonistic capacity in vitro of six Streptomyces strains was evaluated by direct confrontation and through volatiles against E. rostratum, isolated from maize leaves in the state of Chihuahua, (this being the first report of occurrence in this State) and was calculated by the percentage of inhibition of radial growth (PIRG). Likewise, the capacity of Streptomyces to produce indole acetic acid (IAA) and siderophores was determined, in addition to the fixation of atmospheric nitrogen and solubilize phosphates. The obtained PIRG ranged from 34.9 to 95.7% by direct confrontation and from 0.6 to 2.2% through volatiles. Streptomyces cangkringensis strain CIAD-CA07 (A7) and Streptomyces misionensis strain CIAD-CA27 (A27) were able to produce IAA, with 3 and 29 ?g mL-1, respectively. All strains were able to produce the siderophore trihydroxamate (ferrioxamine), ranging from 7.8 to 39.3 % siderophore units, and to fix atmospheric nitrogen. Based on these results, Streptomyces strains could be used as biological control agents for E. rostratum and as biofertilizers in horticultural crops.


Keywords


Actinomycetes; antagonists; biocontrol; diseases; phytopathogen; corn

Full Text:

PDF (Español)

References


Arnow LE. 1937. Colorimetric determination of the components of 3,4-dihydroxphenylalanine tyrosine mixtures. The Journal of Biological Chemistry 118(2):531–537. http://www.jbc. org/content/118/2/531.full.pdf

Boukaew S, Plubrukam A and Prasertsan P. 2013. Effect of volatile substances from Streptomyces philanthi RM-1-138 on growth of Rhizoctonia solani on rice leaf. Biocontrol 58(4): 471-482. https://doi.org/10.1007/s10526-013-9510-6

Braun V, Pramanik A, Gwinner T, Köberle M and Bohn E. 2009. Sideromycins: tools and antibiotics. Biometals 22(1): 3. https://doi.org/0.1007/s10534-008-9199-7

Centko RM, Ratnaweera PB, Tysoe C, Withers SG, Dilip de Silva E and Andersen RJ. 2017. Alpha-glucosidase and alphaamylase inhibiting thiodiketopiperazines from the endophytic fungus Setosphaeria rostrata isolated from the medicinal plant Costus speciosus in Sri Lanka. Phytochemistry Letters 22: 76-80. https://doi.org/10.1016/j.phytol.2017.09.004.

Chung CL, Longfellow JM, Walsh EK, Kerdieh Z, Van Esbroeck G, Balint-Kurti P and Nelson, R. J. 2010. Resistance loci affecting distinct stages of fungal pathogenesis: Use of introgression lines for QTL mapping and characterization in the maize–Setosphaeria turcica pathosystem. BMC Plant Biology 10 (103): 1-25. https://doi.org/10.1186/1471-2229-10-103

Dávila-Medina MD, Gallegos-Morales G, Hernández-Castillo FD, Ochoa-Fuente YM y Flores-Olivas, A. 2013. Actinomicetos antagónicos contra hongos fitopatógenos de importancia agrícola. Revista Mexicana de Ciencias Agrícolas 4(8):1187-1196. https://www.scielo.org.mx/pdf/remexca/ v4n8/v4n8a6.pdf

Dertz EA, Xu J, Stintzi A and Raymond KN. 2006. Bacillibactin-Mediated Iron Transport in Bacillus Subtilis. Journal of the American Chemical Society 128 (1): 22-23. https://doi. org/10.1021/ja055898c

Dong J, Fan Y, Gui X, An X, Ma J and Dong Z. 2008. Geographic distribution and genetic analysis of physiological races of Setosphaeria turcica in Northern China. American Journal of Agricultural and Biological Science 3(1): 389-398. https:// www.thescipub.com/pdf/10.3844/ajabssp.2008.389.398

Evangelista-Martínez Z. 2014. Isolation and characterization of soil Streptomyces species as potential biological control agents against fungal plant pathogens. World Journal of Microbiology and Biotechnology 30(5): 1639-1647. https://doi. org/10.1007/s11274-013-1568-x

Franco-Correa M, Quintana A, Duque C, Suarez C, Rodríguez MX and Barea JM. 2010. Evaluation of actinomycete strains for key traits related with plant growth promotion and mycorrhiza helping activities. Applied Soil Ecology 45(3), 209217. https://doi.org/10.1016/j.apsoil.2010.04.007

González-Franco A, Deobald L, Spiak A and Crawford D. 2003. Actinobacterial chitinase-like enzymes: profiles of rhizosphere versus non-rhizosphere isolates. Canadian Journal of Microbiology 49: 683-698. https://doi.org/10.1139/w03-089

Gopalakrishnan S, Pande S, Sharma M, Humayun P, Kiran BK, Sandeep D and Rupela O. 2011. Evaluation of actinomycete isolates obtained from herbal vermicompost for the biological control of Fusarium wilt of chickpea. Crop Protection 30(8): 1070-1078. https://doi.org/10.1016/j.cropro.2011.03.006

Kónya A, Szabó Z, Láng I, Barta I and Salát J. 2008. Production of FK520 by Streptomyces tubercidicus. Microbiological Research 163(6): 624-632. https://doi.org/10.1016/j.micres.2006.10.002

Lee J, Postmaster A, Soon HP, Keast D and Carson KC. 2012. Siderophore production by actinomycetes isolates from two soil sites in Western Australia. Biometals 25(2): 285-296. https://doi.org/10.1007/s10534-011-9503-9

León J, Aponte JJ, Rojas R, Cuadra D, Ayala N, Tomás G y Guerrero M. 2011. Estudio de actinomicetos marinos aislados de la costa central del Perú y su actividad antibacteriana frente a Staphylococcus aureus meticilina resistentes y Enterococcus faecalis vancomicina resistentes. Revista Peruana de Medicina Experimental y Salud Publica 28: 237–246. https://www. scielo.org.pe/pdf/rins/v28n2/a10v28n2

Matsukawa E, Nakagawa Y, Limura Y and Hayakawa M. 2007. Stimulatory effect of indole-3-acetic acid on aerial mycelium formation and antibiotic production in Streptomyces spp. Actinomycetologica 21(1): 32-39. https://doi.org/10.3209/saj. SAJ210105

Muharram M, Abdelkader M and Alqasoumi S. 2013. Antimicrobial activity of soil actinomycetes isolated from Alkharj, KSA. International Research Journal of Microbiology 4(1): 12-20. https://www.interesjournals.org/articles/antimicrobial-activity-of-soil-actinomycetes-isolated-from-alkharj-ksa. pdf

Nautiyal CS. 1999. An efficient microbiological growth medium for screening phosphate solubilizing microorganisms. FEMS Microbiology Letters 170(1): 265-270. https://doi. org/10.1111/j.1574-6968.1999.tb13383.x

Nuñez BM, Robledo MT, Calderón AE, Zavala JDJG, Rojas HVS, Rincón VH A and Colín SM. 2019. Rendimiento de grano y resistencia a tizón foliar (“Exserohilum turcicum”) de híbridos fértiles y androestériles de maíz. Agrociencia 53(1), 73-88. https://www.colpos.mx/agrocien/Bimestral/2019/ ene-feb/art-7.pdf

Peña HB y Reyes I. 2007. Aislamiento y evaluación de bacterias fijadoras de nitrógeno y disolventes de fosfatos en la promoción del crecimiento de la lechuga (Lactuca sativa L.). Interciencia 32(8): 560-565. https://www.redalyc.org/articulo. oa?id=33932811

Pérez-Corral DA, García-González NY, Gallegos-Morales G, Ruiz-Cisneros MF, Berlanga-Reyes DI and Rios-Velasco C. 2015. Isolation of actinomycetes associated to apple trees rhizosphere antagonistic to Fusarium equiseti. Revista Mexicana de Ciencias Agrícolas 6(7): 1629-1638. http://www.scielo. org.mx/pdf/remexca/v6n7/v6n7a16.pdf

Prashith KTR, Vinayaka KS, Soumya KV, Ashwini SK and Kiran R. 2010. Antibacterial and antifungal activity of methanolic extract of Abrus pulchellus Wall and Abrus precatorius Linn: A comparative study. International Journal of Pharmacology and Toxicology 2: 26–29. https:// scholar.google.com/scholar?hl=en&as_sdt=0,5&clust er=2620410972000518423.

Ruiz-Cisneros MF, Rios-Velasco C, Berlanga-Reyes DI, OrnelasPaz JJ, Acosta-Muñiz CH, Romo-Chacón A, Zamudio-Flores PB, Pérez-Corral DA, Salas-Marina MÁ, Ibarra-Rendón JE and Fernández-Pavía SP. 2017. Incidence and causal agents of root diseases and its antagonists in apple orchards of Chihuahua, México. Revista Mexicana de Fitopatología 35(3): 1-26. https://dx.doi.org/10.18781/R.MEX.FIT.1704-3

Schwyn B and Neilands JB. 1987. Universal chemical assay for the detection and determination of siderophores. Analytical biochemistry 160(1): 47-56. https://doi.org/10.1016/00032697(87)90612-9

Walpola BC and Yoon MH. 2013. In vitro solubilization of inorganic phosphates by phosphate solubilizing microorganisms. African Journal of Microbiology Research 7(27): 3534-3541. https://doi.org/10.5897/AJMR2013.5861

Watanabe T. 2010. Pictorial atlas of soil and seed fungi: Morphologies of cultured fungi and key to species. CRC press.

Yuan WM and Crawford DL. 1995. Characterization of Streptomyces lydicus WYEC108 as a potential biocontrol agent against fungal root and seed rots. Applied and Environmental Microbiology 61(8): 3119-3128. https://sci-hub. tw/10.0000/aem.asm.org/aem/61/8/3119




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1904-2

Refbacks

  • There are currently no refbacks.