In vitro antifungal activity of antagonistic microorganisms against Fusarium oxysporum from avocado trees rhizosphere of Xalisco, Nayarit, Mexico

María Guadalupe Vega-Torres, María Fernanda Ruiz-Cisneros, Daniel Alonso Pérez-Corral, David Ignacio Berlanga-Reyes, José de Jesús Ornelas-Paz, Claudio Rios-Velasco, Octavio Jhonathan Cambero-Campos, Mario Orlando Estrada-Virgen, Gregorio Luna-Esquivel, Frédérique Lucciene Denise-Revérchon

Abstract


The aim of the study was to isolate and characterize antagonistic fungi and bacteria from the rhizosphere of avocado orchards of Xalisco, Nayarit, Mexico, capable of inhibiting the in vitro growth of Fusarium oxysporum isolates. In 2018, soil samples associated with the rhizosphere of healthy trees from 10 cv. Hass avocado orchards were collected in the municipality of Xalisco, Nayarit, Mexico for the isolation of possible antagonists of F. oxysporum. One hundred and seventeen isolates of actinomycetes (Streptomyces spp.), 83 bacteria (Bacillus spp.), 43 fungi (Trichoderma spp.), were isolated and identified morphologically. Ten isolates (randomly) from each group of antagonistic microorganisms were evaluated against three isolates of F. oxysporum and 10 of these isolates that showed the greatest inhibition were molecularly characterized. Of the antagonists evaluated in vitro, the isolate A75 (Streptomyces sp.) highlighted with PIRG that ranged from 26.82 to 67.52%; the isolates B65 and B78 (B. amyloliquefaciens and B. velezensis, respectively), showed inhibitions >50% and the 10 Trichoderma isolates that inhibited the radial growth (PIRG) of F. oxysporum between 35 to 75%. In avocado orchards in Xalisco, Nayarit, there are antagonistic microorganisms, especially strains of the Trichoderma spp., Bacillus spp. and Streptomyces spp. genera with putative potential to be used in the management of Fusarium spp.


Keywords


Biocontrol; antagonists; fungus; actinomycetes; bacteria; diseases

Full Text:

PDF (Español)

References


Almaraz SA, Alvarado RD, Tlapal BB y Espinoza VD. 2012. Identificación de hongos antagonistas a Phytophthora cinnamomi Rands en bosques de encino del Arrayanal, Colima y Tecoanapa, Guerrero. Revista Chapingo Serie Ciencias Forestal y del Ambiente 18 (3): 341-355. https:// dx.doi.org/10.5154/r.rchscfa.2011.09.061

Arguelles-Arias A, Ongena M, Halimi B, Lara Y, Brans A, Joris B and Fickers P. 2009. Bacillus amyloliquefaciens GA1 as a source of potent antibiotics and other secondary metabolites for biocontrol of plant pathogens. Microbial Cell Factories 8(1): 12-63. https://doi.org/10.1186/14752859-8-63

Buyer JS. 1995. A soil and rhizosphere microorganism isolation and enumeration medium that inhibits Bacillus mycoides. Applied and Environmental Microbiology 61(5): 1839-1842. https://aem.asm.org/content/aem/61/5/1839. full.pdf

Dávila-Medina MD, Gallegos-Morales G, Hernández-Castillo FD, Ochoa-Fuente YM y Flores-Olivas A. 2013. Actinomicetos antagónicos contra hongos fitopatógenos de importancia agrícola. Revista Mexicana de Ciencias Agrícolas 4(8): 1187-1196. http://www.scielo.org.mx/pdf/remexca/ v4n8/v4n8a6.pdf

Eskalen A, Stouthamer R, Lynch SC, Rugman-Jones PF, Twizeyimana M, Gonzalez A, and Thibault T. 2013. Host range of Fusarium dieback and its ambrosia beetle (Coleoptera: Scolytinae) vector in southern California. Plant Disease 97(7): 938-951. https://doi.org/10.1094/PDIS-1112-1026-RE

Freeman S, Sharon M, Dori-Bachash M, Maymon M, Belausoy E, Maoz Y, Margalit O, Protasov A, and Mendel Z. 2016. Symbiotic association of three fungal species throughout the life cycle of the ambrosia beetle Euwallacea nr. fornicatus. Symbiosis 68(1-3): 115-128. https://doi. org/10.1007/s13199-015-0356-9.

García-Ávila CDJ, Trujillo-Arriaga FJ, López-Buenfil JA, González-Gómez R, Carrillo D, Cruz LF, Ruiz-Galván I, Quezada-Salinas A and Acevedo-Reyes N. 2016. First report of Euwallacea nr. fornicatus (Coleoptera: Curculionidae) in Mexico. Florida Entomologist 99(3): 555-557. https://doi.org/10.1653/024.099.0335

Gajera HP and Vakharia DN. 2010. Molecular and biochemical characterization of Trichoderma isolates inhibiting a phytopathogenic fungi Aspergillus niger Van Tieghem. Physiological and Molecular Plant Pathology 74: 274-282. https://doi.org/10.1016/j.pmpp.2010.04.005

Harrington TC, Fraedrich SW and Aghayeva DN. 2008. Raffaelea lauricola, a new ambrosia beetle symbiont and pathogen on the Lauraceae. Mycotaxon 104:399-404. https:// www.srs.fs.usda.gov/pubs/ja/ja_harrington008.pdf

Hernández-Castillo FD, Berlanga-Padilla AM, Gallegos-Morales G, Cepeda-Siller M, Rodríguez-Herrera R, Aguilar-González CN y Castillo RF. 2011. In vitro antagonist action of Trichoderma strains against Sclerotinia sclerotiorum and Sclerotium cepivorum. American Journal of Agricultural and Biological Sciences 6 (3): 410-417. https://pdfs.semanticscholar.org/4677/cd523afbc6b90f4cbe36ed0da94e4b7f5493.pdf

Hughes MA, Martini X, Kuhns E, Colee J, Mafra?Neto A, Stelinski LL, and Smith JA. 2017. Evaluation of repellents for the redbay ambrosia beetle, Xyleborus glabratus, vector of the laurel wilt pathogen. Journal of Applied Entomology 141(8): 653-664. https://doi.org/10.1111/jen.12387

Koontz J and Marcy J. 2003. Formation of natamycin: cyclodextrin inclusion complexes and their characterization. Journal of Agriculture and Food Chemistry 51: 7106-7110. https://doi.org/10.1021/jf030332y

Korsten L, De-Villiers EE, Wehner RC and Kotzet JM. 1997. Field spray of Bacillus subtilis and fungicides for control of preharvest fruit disease of avocado in South Africa. Plant Disease 81: 455-459. https://dx.doi.org/10.1094/PDIS.1997.81.5.455

Macías-Macías A. 2011. México en el mercado internacional de aguacate. Revista de Ciencias Sociales. 17(3): 517-532. https://www.redalyc.org/articulo.oa?id=28022767011

Pérez-Corral D, García-González N, Gallegos-Morales G, Ruiz-Cisneros M, Berlanga-Reyes D and Rios-Velasco C. 2015. Isolation of actinomycetes associated to apple trees rhizosphere antagonistic to Fusarium equiseti. Revista Mexicana de Ciencias Agrícolas 6(7): 1629-1638. http://www.scielo.org.mx/pdf/remexca/v6n7/v6n7a16.pdf

Pridham TG, Hesseltine CW and Benedict RG. 1958. A guide for the classification of Streptomycetes according to selected groups. Placement of strains in morphological sections. Applied Microbiology 6(1): 52-79. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC1057356/pdf/applmicro00315-0061.pdf

Rios-Velasco C, Caro CJ, Berlanga RD, Ruiz CM, Ornelas PJ, Salas MM, Villalobos PE and Guerrero PV. 2016. Identification and antagonistic activity in vitro of Bacillus spp. and Trichoderma spp. isolates against common phytopathogenic fungi. Revista Mexicana de Fitopatología 34(1): 84-99. https://dx.doi.org/10.18781/R.MEX.FIT.1507-1

Ruiz-Cisneros M, Rios-Velasco C, Berlanga-Reyes D, Ornelas-Paz J, Acosta-Muñiz C, Romo-Chacón A, Zamudio-Flores P and Pérez-Corral DA. 2017. Incidence and causal agents of root diseases and its antagonists in apple orchards of Chihuahua, México. Revista Mexicana de Fitopatología 35(3): 437-462. http://rmf.smf.org.mx/Vol3532017/RMF1704-3.pdf

Shirling EB and Gottlieb D. 1966. Method for characterization of Streptomyces species. International Journal of Systematic Bacteriology 16(3): 313-340. doi: 10.1099/00207713-16-3-313.

Watanabe T. 2010. Pictorial atlas of soil and seed fungi: morphologies of cultured fungi and key to species: CRC press. 426 p.




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.1904-3

Refbacks

  • There are currently no refbacks.