Inhibitory effect of antagonistic bacteria against Sclerotium rolfsii, causal agent of southern blight of common bean

Juan Carlos Martínez-Álvarez, Flavio Camacho-Angulo, Yolani de Jesús Bojórquez-Armenta, Bardo Sánchez-Soto, Jesús Damián Cordero-Ramírez, Cecilia de los Ángeles Romero-Urías, Rubén Felix-Gástelum, Guadalupe Arlene Mora-Romero

Abstract


The objective of the present study was to select bacterial strains from the rhizosphere of common bean crop and to determine their potential to control Sclerotium rolfsii under in vitro and in planta conditions. Soil samples were collected in the Municipalities of Ahome, Guasave and Angostura, Sinaloa, México. The strains were evaluated in vitro conditions, afterward the best isolates were tested in planta, and were identified based on 16S region of ribosomal DNA (three samples). Sixty-five bacterial isolates were tested against Sclerotium rolfsii with an inhibition from 2.5 to 65%. Acinetobacter pittii (COHUI06), Pseudomonas putida (SANMI02) and Burkholderia sp. (GLS06) inhibited 55, 60 and 65% under in vitro conditions; and resulted not hemolytic and their molecular identification was based on 16S rDNA. Only Burkholderia sp. exherted the highest percentage inhibition in planta to control S. rolfsii with a reduction of incidence and disease severity of 40 and 50% respectively, and promoted the dry weight of the plant.  A. pitti and P. putida were not efficient in controlling the fungus in planta. Greenhouse and field studies with this bacteria are suggested.

Keywords


antagonist; biocontrol; Phaseolus vulgaris

Full Text:

PDF

References


Da Silva K, Cassetari AES, Lima AS, de Brandt E, Pinnock E, Vandamme P and Moreira FM. 2012. Diazotrophic Burkholderia species isolated from the Amazon region exhibit phenotypical, functionaland genetic diversity. Systematic and Applied Microbiology 35(4):253-262. https://doi.org/10.1016/j.syapm.2012.04.001.

Daur I, Saad MM, Eida A A, Ahmad S, Shah ZH, Ihsan MZ, Muhammad Y, Sohrab SS and Hirt H. 2018. Boosting Alfalfa (Medicago sativa L.) production with rhizobacteria from various plants in Saudi Arabia. Frontiers in microbiology 9: 1-12. https://doi.org/10.3389/fmicb.2018.00477.

Eberl L and Vandamme P. 2016. Members of the genus Burkholderia: good and bad guys. F1000Research 5:1007. https://doi.org/10.12688/f1000research.8221.1.

Elsherif M and Grossmann F. 1994. Comparative investigations on the antagonistic activity of fluorescent pseudomonads against Gaeumannomyces graminis var. tritici in vitro and in vivo. Microbiological Research 149(4): 371-377. https://doi.org/10.1016/S0944-5013(11)80084-4.

Espinosa-Victoria D, López-Reyes L, Carcaño-Montiel MG and Serret-López M. 2020. The Burkholderia genus: between mutualism and pathogenicity. Mexican Journal of Phytopathology 38(3): 337-359. https://doi.org/10.1007/s42161-020-00550-1.

Forbes BA, Sahm DF and Weissfeld AS. 2002. Bailey and Scott´s Diagnostic Microbiology. 11th Ed. Mosby, St. Louis, MO. 1136 p

Gholami M, Ebrahimi A, Mozafari J, Bihamta MR and Rahaie M. 2019. Phenotypic and genotypic screening of common bean (Phaseolus vulgaris L.) landraces for resistance to collar rot fungus (Sclerotium rolfsii Sacc.) in North of Iran. Journal of Plant Pathology 102: 67–78. https://doi.org/10.1007/s42161-019-00373-9.

Hennessy R C, Glaring MA, Olsson S and Stougaard P. 2017. Transcriptomic profiling of microbe-microbe interactions reveals the specific response of the biocontrol strain P. fluorescens In5 to the phytopathogen Rhizoctonia solani. BMC research notes 10: 376. https://doi.org/10.1186/s13104-017-2704-8.

Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution 16:111-120. https://doi.org/10.1007/BF01731581.

Köhl J, Kolnaar R and Ravensberg W J. 2019. Mode of action of microbial biological control agents against plant diseases: Relevance beyond efficacy. Frontiers in plant science 10: 845-845. https://doi.org/10.3389/fpls.2019.00845.

Kumar DDP, Thenmozhi R, Anupama PD, Nagasathya A, Thajuddin N and Paneerselvam A. 2011. Selection of potential antagonistic Bacillus and Trichoderma isolates from tomato rhizospheric soil against Fusarium oxysporum f. sp. lycoperscisi. Research Journal of Biological Sciences 6(10): 523-531. https://doi.org/10.3923/rjbsci.2011.523.531.

Kumar S, Stecher G, Li M, Knyaz C and Tamura K. 2018. MEGA X: Molecular Evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution 35(6): 1547-1549. https://doi.org/10.1093/molbev/msy096.

Moreno B and Acevedo R. 2002. Caracterización patogénica y estudio de los grupos de compatibilidad micelial en Sclerotium cepivorum Berk. Rev Iberoam Micol 19: 115-119. http://www.reviberoammicol.com/2002-19/115119.pdf

Nandi S, Hembaram S, Adhikari A, Tiwari BK and Dutta S. 2017. Host infection beyond the traditional range of Sclerotium (Athelia) rolfsii with Physalis minima. Bioinformation 13(10):333-338. https://doi.org/10.6026/97320630013333.

Patricio-Hernández A, Ortega-Acosta SA, Ramírez-Peralta A, Ayala-Sánchez A, Palemón-Alberto F, Toledo-Hernández E, Romero-Ramírez Y and Toribio-Jiménez J. 2020. Antagonistic bacteria for biospace control of roselle spot (Corynespora cassiicola) of Hibiscus sabdariffa. Mexican Journal of Phytopathology 38(3): 450-462. https://doi.org/10.18781/R.MEX.FIT.2006-1.

Qessaoui R, Bouharroud R, Furze JN, El Aalaoui M, Akroud H, Amarraque A, Van Vaerenbergh J, Tahzima R, Mayad EH and Chebli B. 2019. Applications of new rhizobacteria Pseudomonas isolates in agroecology via fundamental processes complementing plant growth. Scientific Reports 9: 12832. https://doi.org/10.1038/s41598-019-49216-8.

Rojas-Rojas FU, López-Sánchez D, Meza-Radilla G, Méndez-Canarios A, Ibarra JA and Estrada-de los Santos P. 2019. El controvertido complejo Burkholderia cepacia, un grupo de especies promotoras del crecimiento vegetal y patógenas de plantas, animales y humanos. Revista Argentina de Microbiología 51(1): 84-92. https://doi.org/10.1016/j.ram.2018.01.002.

Saitou N and Nei M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution 4(4): 406-425. https://doi.org/10.1093/oxfordjournals.molbev.a040454.

Shi T, Reeves RH, Gilichinsky DA and Friedmann EI. 1997. Characterization of viable bacteria from Siberian permafrost by 16S rDNA sequencing. Microbial Ecology 33: 169-179. https://doi.org/10.1007/s002489900019.

Volpiano CG, Lisboa BB, São José JFB, de Oliveira AMR, Beneduzi A, Passaglia LMP and Vargas LK. 2018. Rhizobium strains in the biological control of the phytopathogenic fungi Sclerotium (Athelia) rolfsii on the common bean. Plant and Soil 432: 229-243. https://doi.org/10.1007/s11104-018-3799-y.

White TJ, Bruns TS, Lee S and Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. Pp:315-322. In: Innis MA, Gelfand DH, Sninsky JJ and White TJ (eds.). PCR protocols: A guide to methods and applications. Academic Press. San Diego, USA. 1990p.

Yánez-Mendizábal V, Usall J, Viñas I, Casals C, Marín S, Solsona S and Teixidó N. 2011. Potential of a new strain of Bacillus subtilis CPA-8 to control the major postharvest diseases of fruit. Biocontrol Science and Technology 21(4): 409-426. https://doi.org/10.1080/09583157.2010.541554.




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2006-5

Refbacks

  • There are currently no refbacks.