Gains in recurrent selection cycles for grain yield and resistance to head smut in maize

Gelasino Díaz-Ramírez, Carlos De León-García de Alba, Daniel Nieto-Ángel, Ma. del Carmen Mendoza-Castillo

Abstract


The basidiomycet Sporisorium reilianum f. sp. zeae infects the maize plant causing important losses in regions with adequate conditions for disease development. In this work, the response to selection of six and five cycles of selection in a white and a yellow endosperm maize populations improved through S1 recurrent selection for desirable agronomic characters, grain yield and resistance to head smut were evaluated. In a separate trial, same cycles were planted to measure progress in disease resistance and to evaluate a new method of inoculation were artificially inoculated. A randomized complete block design with three replications was used for the yield trials and two replications in the inoculated trial. Cycles evaluated in the two populations showed an increase in disease resistance of 0.94 y 1.2% cycle-1, and a genetic gain in grain yield of 272.9 y 620 kg ha-1 cycle-1 for the white and yellow endosperm populations, respectively. Results showed that recurrent S1 selection was efficient in improvement of grain yield and resistance to head smut in both populations.


Keywords


S1 families; polygenic resistance; genetic resistance; head smut

Full Text:

PDF

References


Aquino-Martínez JG, Sánchez-Flores A, González-Huerta A y Sánchez-Pale JR. 2011. Resistencia de variedades e híbridos de maíz (Zea mays L.) a Sporisorium reilianum y su rendimiento de grano. Revista Mexicana de Fitopatología 29: 39-49. http://www.scielo.org.mx/scielo.php?script=sci_arttext&pid=S0185-33092011000100004

Bernardo R, Bourrier M and Oliver JL. 1992. Generation means analysis of resistance to head smut in maize. Agronomie 12(4): 303-306. https://doi.org/10.1051/agro:19920403

CESAVEM (Comité Estatal de Sanidad Vegetal del Estado de México). 2015. Campaña manejo fitosanitario del maíz. 8p. http://www.cesavem.mx/img/fitosanitariodelmaiz/maiz2.pdf

Dhillon BS and Khehra AS.1989. Modified S1 recurrent selection in maize improvement. Crop Science 29: 226–228. https://doi.org/10.2135/cropsci1989.0011183X002900010049x

Eckhoff SR, Paulsen MR and Yang SC. 2003. Maize. pp 3647–3653. In: Caballero B, Finglas P and Toldra F. Encyclopedia of Food Sciences and Nutrition. 2nd Edition. Academic Press. 6000p. https://doi.org/10.1016/B0-12-227055-X/00725-2

Edmeades GO, Bolaños J, Elings A, Ribaut JM, Bänziger M and Westgate ME. 2000. The role and regulation of the anthesis silking interval in maize. In: Westgate M, Boote K, Knievel D and Kiniry J (eds.). Physiology and modeling kernel set in maize. Crop Science Society of America and the American Society of Agronomy 48: 65-80. https://doi.org/10.2135/cssaspecpub29.c4

FAOSTAT (Food and Agriculture Organization Corporate Statistical Database). 2018. Producción mundial de maíz. http://www.fao.org/faostat/es/#data/QC.

Fullerton RA, Scott DJ and Graham GJ. 1974. Effect of fungicides on the control of head smut of maize and the relationship between infection level and crop yield. New Zealand Journal of Experimental Agriculture 2: 177–179. https://doi.org/10.1080/03015521.1974.10425757

Hallauer AR, Carena MJ and Miranda JB. 2010. Quantitative Genetics in Maize Breeding, Handbook of Plant Breeding. New York: Springer Science and Business Media. 663p. http://dx.doi.org/10.1007/978-1-4419-0766-0

Halisky PM. 1963. Head smut of sorghum, sudan grass, and corn, caused by Sphacelotheca reiliana (kühn) Clint. Journal of Agricultural Sciencie 34(8): 287–304. http://dx.doi.org/10.3733/hilg.v34n08p287

IBPGR. 1991. Descriptors for Maize. International Maize and Wheat Improvement Center, México City/International Board for Plant Genetic Resources, Rome. 85p.

Kaul J, Jain K and Olakh D. 2019. An overview on role of yellow maize in food, feed and nutrition security. International Journal of Current Microbiology and Applied Sciences 8(2): 3037-3048. https://doi.org/10.20546/ijcmas.2019.802.356

Kebede PM. 2001. Response to S1 recurrent selection and estimation of genetic parameters in effective population sizes of the BS11 maize population. Retrospective theses and dissertations. 663p. https://doi.org/10.31274/rtd-180813-14332

Kruger W. 1962. Sphacelotheca reiliana on maize. I. Infection and control studies. South African Journal of Agricultural Science 5(1): 43-56. https://hdl.handle.net/10520/AJA05858860_650

Lynch KV, Edgington LV and Busch LV.1980. Head smut, a new disease of corn in Ontario. Canadian Journal Plant Pathology 2(3): 176-178. https://doi.org/10.1080/070606680095014371B

Márquez SF. 1985. Genotecnia vegetal: Métodos, teoría, resultados. Tomo I. México D.F. AGT Editor, S. A. 357p.

Matyac CA and Kommedahl T. 1985. Factors affecting the development of head smut caused by Saphacelotheca reiliana on corn. Phytopathology 75: 577–581. https://www.apsnet.org/publications/phytopathology/backissues/Documents/1985Articles/Phyto75n05_577.PDF

Martínez CA, Roux A, Jauneau A and Dargent R. 2002. The biological cycle of Sporisorium reilianum f.sp. zeae: an overview using microscopy. Mycologia 94(3): 505-514. http://dx.doi.org/10.1080/15572536.2003.11833215

Martínez- de la Parte E, Wilson BD, Lorenzo ME, Guerrero BD, García RD, Rodríguez GG, Sierra RP y Gómez LY. 2016. El carbón de la espiga del maíz causado por Sphacelotheca reiliana (J|G. Kühn) GP. Clinton en Cuba. Fitosanidad 20(1): 3-38. http://www.redalyc.org/articulo.oa?id=209157223005

Maya-Lozano JB y Ramírez-Díaz JL. 2002. Selección recurrente en tres poblaciones de maíz para el subtrópico de México. Revista Fitotecnia Mexicana 25(2): 201-207. https://www.revistafitotecniamexicana.org/documentos/25-2/11a.pdf

Pérez-Camarillo JP y Bobadilla-Meléndez M. 2007. Carbón de la espiga de maíz. Síntesis de resultados del ciclo agrícola P.V. 2006. Valle del Mezquital, Hgo. Desplegable Técnica Número 15. Centro de Investigación Regional Centro. INIFAP-Hidalgo. 2 p.

Pérez-Camarillo JP y Bobadilla-Meléndez M. 2003. Carbón de la espiga de maíz. Síntesis de resultados del ciclo agrícola P.V. 2002. Valle del Mezquital, Hgo. Desplegable Técnica Número 6. Centro de Investigación Regional Centro. INIFAP-Hidalgo. 4 p.

Pérez-Camarillo JP, Martínez-Ruiz E y Bobadilla-Meléndez M. 2009. Carbón de la espiga de maíz. Síntesis de resultados del ciclo agrícola P.V. 2008. Valle del Mezquital, Hgo. Desplegable Técnica Número 21. Centro de Investigación Regional Centro. INIFAP-Hidalgo. 4 p.

Quezada-Salinas A, De León-García De Alba C, Hernández-Anguiano AM y Nava-Díaz C. 2013. Evaluación de métodos de inoculación de semillas de maíz con Sporisorium reilianum f. sp. zeae (Kûhn) Langdon & Fullerton. Revista Mexicana de Fitopatología 31(2): 80-90. http://www.scielo.org.mx/pdf/rmfi/v31n2/v31n2a1.pdf

Quezada-Salinas A, Moreno-Velázquez M, De León-García de Alba C, Nava-Díaz C, Solano-Báez AR. 2017. Resistencia genética a Sporisorium reilianum f. sp. zeae en líneas seleccionadas de maíz (Zea mays L.) con endospermo blanco y amarillo. Revista Mexicana de Fitopatología 35(3): 534-548. http://dx.doi.org/10.18781/R.MEX.FIT.1705-2

Qi F, Zhang L, Dong X, Di H, Zhang J, Yao M, Dong L, Zeng X, Liu X, Wang Z and Zhou Y. 2019. Analysis of Cytology and Expression of Resistance Genes in Maize Infected with Sporisorium reilianum. Plant Disease 103(8): 2100-2107. https://doi.org/10.1094/PDIS-09-18-1687-RE

Ramírez Dávila JF, Sánchez Pale JR y De León C. 2011. Estabilidad espacio temporal de la distribución del carbón de la espiga del maíz (Sporisorium reilianum) en el Estado de México, México. Revista Mexicana de Fitopatología 29: 1-14. http://www.scielo.org.mx/pdf/rmfi/v29n1/v29n1a1.pdf

Rodríguez OA and Hallauer AR. 1988. Effects of recurrent selection in corn populations. Crop Science 28(5): 276-280. https://doi.org/10.2135/cropsci1988.0011183X002800050015x

Ruiz de Galarreta JI and Álvarez RA. 2007. Six cycles of S1 recurrent selection in two Spanish maize synthetics. Spanish Journal Agriculture Research 5(2): 193-198. http://dx.doi.org/10.5424/sjar/2007052-239

SAS (Statistical Analysis System). 2013. The SAS system. Version 9.4. SAS OnlineDoc. HTML. Format, SAS Institute, Cary, NC, USA

Stromberg EL, Stienstra WC, Kommedahl T, Matyac CA, Windels CE and Geadelmann JL. 1984. Smut expression and resistance of corn to Sphacelotheca reiliana in Minnesota. Plant Disease 69: 880–884. https://doi.org/10.1094/PD-68-880

Stromberg EL. 1981. Head smut of maize, a new disease in Minnesota. Phytopathology 71: 906.

Tanner AH and Smith OS. 1987. Comparison of half-sib and S1 recurrent selection in the Krug yellow dent maize populations. Crop Science 27(3): 509-513. https://doi.org/10.2135/cropsci1987.0011183X002700030016x

Weyhrich RA, Lamkey KR and Hallauer AR. 1998. Effective population size and response to S1 progeny selection in the BS11 maize population. Crop science 38(5): 1149-1158. https://doi.org/10.2135/cropsci1998.0011183X003800050008x

Whythe IV and Gevers HO. 1988. Diallel analysis of resistance of eight maize inbred lines to Sphacelotheca reiliana. Phytopathology 78: 65-68. https://www.apsnet.org/publications/phytopathology/backissues/Documents/1988Articles/Phyto78n01_65.PDF

Zuo W, Chao Q, Zhang N, Ye J, Tan G, Li B, Xing Y, Zhang B, Liu H, Fengler K, Zhao J, Zhao X, ChenY, Lai J, Yan J and Xu M. 2015. A maize wall-associated kinase confers quantitative resistance to head smut. Natural Genetic 47: 151–57. https://doi.org/10.1038/ng.3170




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2008-1

Refbacks

  • There are currently no refbacks.