Morphological characterization and biocontrol potential of Trichoderma species isolated from semi-arid soils

Jonathan Savín-Molina, Luis Guillermo Hernández-Montiel, Wilson Ceiro-Catasú, Graciela Dolores Ávila-Quezada, Alejandro Palacios-Espinosa, Francisco Higinio Ruiz-Espinoza, Mirella Romero-Bastidas

Abstract


Species of Trichoderma spp. were isolated, identified and characterized associated with Pachycereus pringlei and Jatropha cinerea as biocontrol agents against phytopathogenic fungi. The antagonistic agents were isolated from six sites in Baja California Sur, Mexico. The identification was made based on its morphological characteristics and abundance, frequency of occurrence and mycelial growth of Trichoderma spp. and in vitro antagonism against F. oxysporum, F. solani, R. solani, C. gloeosporioides and A. alternata was determined. Eighteen Trichoderma isolates concentrated in seven species were obtained: T. asperellum, T. atroviride, T. harzianum, T. koningii, T. viride, T. longibrachiatum and Trichoderma spp. Duncan’s test (p<0.05) showed significant differences in the abundance of the species (CFU/g of soil) and the frequency of occurrence. The largest population was found in El Saltito, Los Encinos and Las Pocitas with CFU of 2.1, 1.8 and 0.7 × 103 g-1 of soil respectively. In the in vitro antagonism, T. koningii was the one that significantly inhibited the growth of phytopathogenic fungi. The antifungal activity of the various of Trichoderma spp. can be an alternative for the biocontrol of diseases caused by phytopathogenic fungi.

Keywords


Fungus; soil; diversity; population; phytopathogens; biological control

Full Text:

PDF

References


Alfiky A, and Weisskopf L. 2021. Deciphering Trichodermaplant-pathogen interactions for better development of biocontrol applications. Journal of Fungi 7(1): 61. https://doi.org/10.3390/jof7010061.

Al-Mekhlafi NA, Abdullah QY, Al-Helali MF and Alghalibi SM. 2019. Antagonistic potential of native Trichoderma species against tomato fungal pathogens in Yemen. International Journal of Molecular Microbiology 2(1): 1-10. https://psmpublishers.org/issues/antagonistic-potential-ofnative- trichoderma-species-against-tomato-fungal-pathogens-in-yemen/.

Al-Ani LKT. 2018. Trichoderma from extreme environments: Physiology, diversity, and antagonistic activity. In Extremophiles in Eurasian Ecosystems: Ecology, Diversity, and Applications 8: 389-403. https://doi.org/10.1007/978-981-13-0329-6_14.

Asis A, Shahriar SA, Naher L, Saallah S, Fatihah HNN, Kumar V and Siddiquee S. 2021. Identification patterns of Trichoderma strains using morphological characteristics, phylogenetic analyses and lignocellulolytic activities. Molecular Biology Reports 48: 3285-3301. https://doi.org/10.1007/s11033-021-06321-0.

Ayele TM, Gebremariam GD and Patharajan S. 2021. Isolation, identification and in vitro test for the biocontrol potential of Trichoderma viride on Fusarium oxysporum f. sp. lycopersici. The Open Agriculture Journal 15: 10-20. https://doi.org/10.2174/1874331502115010010.

Bae SJ, Mohanta TK, Chung JY, Ryu M, Park G, Shim S, Hong S-B, Seo H, Bae D-W, Bae I, Kim J-J and Bae H. 2016. Trichoderma metabolites as biological control agents against Phytophthora pathogens. Biological Control 92: 128-138. https://doi.org/10.1016/j.biocontrol.2015.10.005

Barnett H and Hunter B. 1972. Illustrated genera of imperfect fungi. EE. UU. Burgess Publ. Co. 241p.

Bissett JW, Gams W and Jaklitsch GJ. 2015. Trichoderma names in the year 2015. IMA Fungus 6: 263-295. https://doi.org/10.5598/imafungus.2015.06.02.02.

Bononi L, Chiaramonte JB, Pansa CC, Moitinho MA and Melo IS. 2020. Phosphorus-solubilizing Trichoderma spp. from Amazon soils improve soybean plant growth. Scientific Reports 10: 2858. https://doi.org/10.1038/s41598-020-59793-8.

Brito RAS, Cavalcante GP, Stock VM, Colman AA, dos Santos DP, Sermarini RA and Maffia LA. 2020. Trichoderma species show biocontrol potential against Ceratocystis wilt in mango plants. European Journal of Plant Pathology 158(3): 781-788. https://doi.org/10.1007/s10658-020-02095-6.

Camacho-Aguiñiga DG, Hernández-Montiel LG, López-Aburto MG y Romero-Bastidas M. 2016. Identificación y caracterización del agente causal de la marchitez en esparrago en Baja California Sur. Memoria de congreso. Suplemento de la Revista Mexicana de Fitopatología 34 (Suplemento): S49. https://www.smf.org.mx/rmf/suplemento/Suplemento342016.html

Carrillo P, Woo SL, Comite E, El-Nakhel C, Rouphael Y, Fusco GM, Borzacchiello A, Lanzuise S and Vinale F. 2020. Application of Trichoderma harzianum, 6-pentyl-?-pyrone and plant biopolymer formulations modulate plant metabolism and fruit quality of plum tomatoes. Plants 9(6): 771. https://doi.org/10.3390/plants9060771.

Cheng CH, Yang CA and Peng KC. 2012. Antagonism of Trichoderma harzianum ETS 323 on Botrytis cinerea mycelium in culture conditions. Phytopathology 102(11): 1054-1063. https://doi.org/10.1094/PHYTO-11-11-0315.

Dini I, Marra R, Cavallo P, Pironti A, Sepe I, Troisi J, Scala G, Lombari P and Vinale F. 2021. Trichoderma strains and metabolites selectively increase the production of volatile organic compounds (VOCs) in olive trees. Metabolites 11(4): 213. https://doi.org/10.3390/metabo11040213.

Elnashar A, Abbas M, Sobhy H and Shahba M. 2021. Crop water requirements and suitability assessment in arid environments: A new approach. Agronomy 11(2): 260. https://doi.org/10.3390/agronomy11020260.

Elshahawy IE, Saied N, Abd-El-Kareem F and Morsy A. 2017. Biocontrol of onion white rot by application of Trichoderma species formulated on wheat bran powder. Archives of Phytopathology and Plant Protection, vol. 50(3-4): 150-166. https://doi.org/10.1080/03235408.2016.1276423.

Gal-Hemed I, Atanasova L, Komon-Zelazowska M, Druzhinina I, S, Viterbo and Yarden O. 2011. Marine isolates of Trichoderma spp. as potential halotolerant agents of biological control for arid-zone agricultura. Applied and Environmental Microbiology 77 (15): 5100-5109. doi:10.1128/AEM.00541-11.

Gamarra MAF, Ojeda MM and Maldonado GAE. 2017. Identificación molecular y tasa de crecimiento de cepas nativas de Trichoderma spp. aisladas de la Región Norte del Paraguay. Investigación Agraria 19(2): 127-132. https://doi.org/10.18004/investig.agrar.2017.diciembre.127-132.

Garnica-Vergara A, Barrera-Ortiz S, Muñoz-Parra E, Raya-González J, Méndez-Bravo A and Macías-Rodríguez L. 2016. The volatile 6-pentyl-2H-pyran-2-one from Trichoderma atroviride regulates Arabidopsis thaliana root morphogenesis via auxin signaling and ethylene insensitive 2 functioning. New Phytologyst 209 (4): 1496-1512. https://doi.org/10.1111/nph.13725.

Gherbawy Y, Druzhinina I, Shaban GM, Wuczkowsky M, Yaser M, El-naghy MA, Prillinger HJ, and Kubicek CP. 2004. Trichoderma populations from alkaline agricultural soil in the Nile valley, Egypt, consist of only two species. Mycological Progress 3(3): 211-218. https://doi.org/10.1007/s11557-006-0091-y.

Harman GA, Howell CR, Viterbo A, Chet I and Lorito M. 2004. Trichoderma species-opportunistic, avirulent plantsymbionts. Nature Reviews Microbiology 2: 43-56. https://doi.org/10.1038/nrmicro797.

Harman G, Obregon M, Samuels G and Lorito M. 2010. Changing models for commercialization and implementation of biocontrol in the developed and developing world. Plant Disease 94: 928-939. https://doi.org/10.1094/ PDIS-94-8-0928.

Hewedy OA, Abdel LKS, Seleiman MF, Shami A, Albarakaty FM and M El-Meihy R. 2020. Phylogenetic diversity of Trichoderma strains and their antagonistic potential against soil-borne pathogens under stress conditions. Biology 9(8): 189. https://doi.org/10.3390/biology9080189.

Katyayani KKS, Bindal S, Prakash Singh J, Rana M and Srivastava S. 2020. In vitro evaluation of Trichoderma spp. against chickpea wilt. International Archive of Applied Sciences and Technology 11(3): 1-4. https://doi.org/10.15515/iaast.0976-4828.11.3.14

Karthikeyan BC, Jaleel A., Lakshmanan GA and Deiveekasundaram M. 2008. Studies on rhizosphere microbial diversity of some commercially important medicinal plants. Colloids and Surfaces B: Biointerfaces 62 (1): 143-45. https://doi.org/10.1016/j.colsurfb.2007.09.004.

Kashyap PL, Solanki MK, Kushwaha P, Kumar S and Srivastava AK. 2020. Biocontrol potential of salt-tolerant Trichoderma and Hypocrea isolates for the management of tomato root rot under saline environment. Journal of Soil Science and Plant Nutrition 20(1): 160-176. https://doi.org/10.1007/s42729-019-00114-y.

Kim K, Heo YM, Jang S, Lee H, Kwon SL, Park MS, Lim YW and Kim JJ. 2020. Diversity of Trichoderma spp. in marine environments and their biological potential for sustainable industrial applications. Sustainability 12, 4327: 1-12. https://doi.org/10.3390/su12104327.

Li N, Alfiky A, Wang W, Islam M, Nourollahi K, Liu X and Kang S. 2018. Volatile compound-mediated recognition and inhibition between Trichoderma biocontrol agents and Fusarium oxysporum. Frontiers in Microbiology 9: 2-16. https://doi.org/10.3389/fmicb.2018.02614.

Liu CM, Liu SY, Liao CK, Lo CT, Lin KC and Peng KC. 2021. Cabbage defense response provoked by Trichoderma Th-LAAO. Archives of Microbiology 203(4): 1641-1647. 203(4):1641-1647. https://doi.org/10.1007/s00203-020-02174-6.

Long Y, Yang X, Cao Y, Lv G, Li Y, Pan Y and Liu Y. 2021. Relationship between soil fungi and seedling density in the vicinity of adult conspecifics in an arid desert forest. Forests 12(1): 92. https://doi.org/10.3390/f12010092.

Ma J, Tsegaye E, Li M, Wu B and Jiang X. 2020. Biodiversity of Trichoderma from grassland and forest ecosystems in Northern Xinjiang, China. 3 Biotech 10(8): 1-13. https://doi.org/10.1007/s13205-020-02301-6.

Michaud JP. 2018. Challenges to conservation biological control on the high plains: 150 years of evolutionary rescue. Biological Control 125: 65-73. https://doi.org/10.1016/j.biocontrol.2018.07.001.

Miguel-Ferrer L, Romero-Arenas O, Andrade-Hoyos P, Sánchez-Morales P, Rivera-Tapia JA and Fernández-Pavía SP. 2021. Antifungal activity of Trichoderma harzianum and T. koningiopsis against Fusarium solani in seed germination and vigor of Miahuateco chili seedlings. Mexican Journal of Phytopathology 39(2): 228-247. https://doi.org/10.18781/R.MEX.FIT.2101-5

Muniappan V, and Muthukumar TV. 2014. Influence of crop species and edaphic factors on the distribution and abundance of Trichoderma in Alfisol soils of southern India. Acta Botánica Croatica 73(1): 37-50. https://doi.org/10.2478/botcro-2013-0004.

Montoya-González AH, Quijano-Vicente G, Morales-Maza A, Ortiz-Uribe N, Hernández-Martínez R. 2016. Isolation of Trichoderma spp. from desert soil, biocontrol potential evaluation and liquid culture production of conidia using agricultural fertilizers. Journal of Fertilizers and Pesticides 7: 163. https://doi.org/10.4172/2471-2728.1000163.

Naeimi S, Khosravi V, Varga A, Vágvölgyi C and Kredics L. 2020. Screening of organic substrates for solid-state fermentation, viability and bioefficacy of Trichoderma harzianum AS12-2, a biocontrol strain against rice sheath blight disease. Agronomy 10(9): 1258. https://doi.org/10.3390/agronomy10091258.

Nykiel-Szyma?ska J, Bernat P and S?aba M. 2018. Potential of Trichoderma koningii to eliminate alachlor in the presence of copper ions. Ecotoxicology and Environmental Safety 162(30):1-9. https://doi.org/10.1016/j.ecoenv.2018.06.060.

Nuangmek W, Aiduang W, Kumla J, Lumyong S and Suwannarach N. 2021. Evaluation of a newly identified endophytic fungus, Trichoderma phayaoense for plant growth promotion and biological control of gummy stem blight and wilt of muskmelon. Frontiers in Microbiology 12: 410. https://doi.org/10.3389/fmicb.2021.634772.

Núñez-Madera CA, Hernández-Montiel LG, López-Aburto MG y Romero-Bastidas M. 2016. Identificación morfológica del agente causal de la marchitez en garbanzo (Cicer arietinum) en Baja California Sur. Memoria de congreso. Revista Mexicana de Fitopatología 34(suplemento): S49 https://www.smf.org.mx/rmf/suplemento/Suplemento342016.html

Osorio-Concepción MFS, Casas PC, Cortés 2013. Efecto de la limitación de fosfato sobre la conidiación de Trichoderma atroviride y mutantes ciegas a la luz. Revista Mexicana de Micología 37: 41-40.

Otadoh JA, Okoth SA, Ochanda J and Kahindi JP. 2011. Assessment of Trichoderma isolates for virulence efficacy on Fusarium oxysporum F. sp. phaseoli. Tropical and Subtropical Agroecosystems 13(1): 99 – 107. http://www.scielo.org.mx/pdf/tsa/v13n1/v13n1a15.pdf

Rifai MA. 1969. A revision of the genus Trichoderma. Mycology Papers 116: 1-56. https://doi.org/10.1139/b91-298.

Rodríguez-Macías KM, Hernández-Montiel LG, López-Aburto MG y Romero-Bastidas M, Chiquito-Contreras R. 2016. Aislamiento e identificación del agente causal de la mancha foliar en albahaca (Ocimum basilicum) en Baja California Sur, México. Revista Mexicana de Fitopatología 34 (suplemento): S50. https://www.smf.org.mx/rmf/suplemento/Suplemento342016.html

Ruangwong OU, Pornsuriya C, Pitija K and Sunpapao A. 2021. Biocontrol mechanisms of Trichoderma koningiopsis PSU3-2 against postharvest anthracnose of chili pepper. Journal of Fungi 7(4): 276. https://doi.org/10.3390/jof7040276.

Siddiquee S. 2017. Practical handbook of the biology and molecular diversity of Trichoderma species from tropical regions. Springer International Publishing. P. 17. https://doi.org/10.1007/978-3-319-64946-7.

Shamurailatpam D and Kumar A. 2020. Selected fungicides and biocontrol agents for managing early blight of tomato caused by Alternaria solani. Indian Journal of Plant Protection 48(4): 474-481.

Silva JBT, Marques E, Menezes JE, Silva JP and Mello SCM. 2020. Population density of Trichoderma fungi in natural environments and agrosystems of a Cerrado area. Biota Neotropica 20(4): 1-9. https://doi.org/10.1590/1676-0611-BN-2020-1048.

Singh SK and Jadon KS. 2019. Biocontrol efficacy of Trichoderma viride against fungal pathogens of cumin, groundnut and castor. Indian Phytopathology 72(3): 537-543.https://doi.org/10.1007/s42360-019-00156-3.

Sharma S, Kour D, Rana KL, Dhiman A, Thakur S, Thakur P, Thakur S, Thakur N, Sudheer S, Yadav N, Yaday AN, Rastegari AA and Singh K. 2019. Trichoderma: Biodiversity, ecological significances, and industrial applications. In: Yadav AN, Mishra S, Singh S and Gupta A (eds). Recent advancement in white biotechnology through fungi. Springer 85-120. https://doi.org/10.1007/978-3-030-10480-1_3.

Su D, Ding L, He S. 2018. Marine-derived Trichoderma species as a promising source of bioactive secondary metabolites. Mini-Rev. Medicinal Chemistry 18(20):1702-1713. https://doi.org/10.2174/1389557518666180727130826

Tegene S, Dejene M, Terefe H, Tegegn G, Tena E and Ayalew A. 2021. Evaluation of native Trichoderma isolates for the management of sugarcane smut (Ustilago scitaminea) in sugar plantations of Ethiopia. Cogent Food and Agriculture 7(1): 1872853. https://doi.org/10.1080/23311932.2021.1872853.

Torres-De la Cruz M, Ortiz-García CF, Bautista-Muñoz C, Ramírez-Pool JA, Ávalos-Contreras N and Cappello-García S. 2015. Diversidad de Trichoderma en el agroecosistema cacao del estado de Tabasco, México. Revista Mexicana de Biodiversidad 86: 947-961. https://doi.org/10.1016/j.rmb.2015.07.012.

Wang C and Zhuang WY. 2020. Carbon metabolic profiling of Trichoderma strains provides insight into potential ecological niches. Mycologia 112(2): 213-223. https://doi.org/10.1080/00275514.2019.1698246.

Wu Q, Sun R, Ni M, Yu J, Li Y, Yu C, Dou K, Ren J and Chen J. 2017. Identification of a novel fungus, Trichoderma asperellum GDFS1009, and comprehensive evaluation of its biocontrol efficacy. Plos One 12(6): e0179957. https://doi.org/10.1371/journal.pone.0179957.

Yang H, Chen Y and Zhang F. 2019. Evaluation of comprehensive improvement for mild and moderate soil salinization in arid zone. Plos One 14(11): e0224790. https://doi.org/10.1371/journal.pone.0224790.

Yang X, Long Y, Sarkar B, Li Y, Lü G, Ali A and Cao YE. 2021. Influence of soil microorganisms and physicochemical properties on plant diversity in an arid desert of Western China. Journal of Forestry Research 1-15. https://doi.org/10.1007/s11676-021-01292-Zhou Y, Wang Y, Chen K,

Wu Y, Hu J, Wei Y, Li J, Yang H, Ryder M and Denton MD. 2020. Near-complete genomes of two Trichoderma species: A resource for biological control of plant pathogens. Molecular Plant Microbe Interactions 33(8): 1036-1039. https://doi.org/10.1094/MPMI-03-20-0076-A.




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2106-7

Refbacks

  • There are currently no refbacks.