Response of tomato (Solanum lycopersicum) varieties to Clavibacter michiganensis subsp. michiganensis infection

Luis Martín Rivera-Sosa, Gustavo Ramírez-Valverde, Beatriz Martínez-Yáñez, Alfonsina Judith-Hernández, Sergio Aranda-Ocampo

Abstract


Clavibacter michiganensis subsp. michiganensis causes bacterial wilt and canker disease of tomato. The objectives of this research were i) to characterize and identify the most aggressive Cmm in Chignahuapan, Puebla, ii) to evaluate the tolerance in two phenological stages of 10 tomato varieties to infection by CP_Cmm1 in the greenhouse and the in vitro sensitivity of the bacteria to bactericides. 12 Cmm isolates were collected from tomato plants and a strain (CP_Cmm-1) with greater aggressiveness was selected according to the time of manifestation of symptoms in plants of var. Reserva. Afterward, the strain was inoculated by cutting with scissors embedded in a suspension with 3 x 108 UFC mL-1 in two phenological stages (at five and 10 true leaves). Symptoms were evaluated for 30 days after inoculation. Additionally, the sensitivity of CP_Cmm-1 to eight commercial bactericides in vitro was evaluated. The results showed that the CP_Cmm-1 strain was identified with 97% similarity with the API20 E system, positive with DAS-ELISA, and by PCR it showed 96.6% identity with Clavibacter michiganensis subsp. michiganensis. The Saher variety showed greater tolerance to infection (* = p?0.05) both in the stage of five and 10 leaves; the varieties Sv4401, Nápoles, and Súper óptimo showed greater susceptibility in the five-leaf stage. The Sv4401 variety was highly susceptible in both stages. Neither variety was resistant to infection by CP_Cmm-1. The use of the Sahel variety and kasugamycin could reduce the damage of this bacteria.


Keywords


bactericides; vascular infection; tolerance; bacteria; varieties

Full Text:

PDF

References


Alarcón C, Castro J, Muñoz F, Arce-Johnson P and Delgado J. 1998. Protein(s) from the gram-positive bacterium Clavibacter michiganensis subsp. michiganensis induces a hypersensitive response in plants. Phytopathology 88: 306-310. https://doi.org/10.1094/phyto.1998.88.4.306

Altschul SF, Gish W, Miller W, Myers EW and Lipman DJ. 1990. Basic local alignment search tool. Journal of Molecular Biology 215:403-410.

Avello MR and Seisdedo LA. 2017. El procesamiento estadístico con R en la investigación científica. MediSur 15(5): 583-586. http://scielo.sld.cu/scielo.php?script=sci_arttext&pid=S1727- 897X2017000500001&lng=es&tlng=es.

Bae C, Han SW, Song YR, Kim BY, Lee HJ, Lee JM, Yeam I, Heu S and Oh CS. 2015. Infection processes of xylem-colonizing pathogenic bacteria: possible explanations for the scarcity of qualitative disease resistance genes against them in crops. Theoretical and Applied Genetics 128(7): 219-1229. https://doi.org/10.1007/s00122-015-2521-1

Balaji V, Mayrose M, Sherf O, Jacob-Hirsch J, Eichenlaub R, Iraki N, Manulis-Sasson S, Rechavi G, Barash I and Sessa G. 2008. Tomato transcriptional changes in response to Clavibacter michiganensis subsp. michiganensis reveal a role for ethylene in disease development. Plant Physiology 146:1797-1809. https://doi.org/10.1104/pp.107.115188

Bialczyk J, Lechowski Z and Dziga D. 2004. Composition of the xylem sap of tomato seedlings cultivated on media with HCO 3? and nitrogen source as NO 3? or NH 4+. Plant and Soil 263(1): 265-272. https://doi.org/10.1023/b:plso.0000047739.11698.ca

Borboa-Flores J, Rueda Puente EO, Acedo Félix E, Ponce JF, Cruz M, Grimaldo JO and García Ortega, AM. 2009. Detección de Clavibacter michiganensis subespecie michiganensis en el tomate del estado de Sonora, México. Revista Fitotecnia Mexicana 32(4): 319-326. https://doi.org/10.35196/rfm.2009.4.319-326

Chalupowicz L, Zellermann EM, Fluegel M, Dror O, Eichenlaub R, Gartemann KH, Savidor A, Sessa G, Iraki N, Barash I and Manulis-Sasson S. 2012. Colonization and movement of GFP-labeled Clavibacter michiganensis subsp. michiganensis during tomato infection. Phytopathology 102(1): 23-31. https://doi.org/10.1094/phyto-05-11-0135

Chalupowicz L, Barash I, Reuven M, Dror O, Sharabani G, Gartemann KH, Eichenlaub R, Sessa G and Manulis-Sasson S. 2017. Differential contribution of Clavibacter michiganensis ssp. michiganensis virulence factors to systemic and local infection in tomato. Molecular Plant Pathology 18: 336-346. https://doi.org/10.1111/mpp.12400

Coaker GL, Willard B, Kinter M, Stockinger EJ and Francis DM. 2004. Proteomic analysis of resistance mediated by Rcm 2.0 and Rcm 5.1, two loci controlling resistance to bacterial canker of tomato. Molecular Plant-Microbe Interactions 17(9): 1019-1028. https://doi.org/10.1094/mpmi.2004.17.9.1019

Croce V, Pianzzola MJ, Durand K, González-Arcos M, Jacques MA and Siri MI. 2016. Multilocus sequence typing reveals high variability among Clavibacter michiganensis subsp. michiganensis strains affecting tomato crops in Uruguay. European Journal of Plant Pathology 144(1): 1-13. https://doi.org/10.1007/s10658-015-0738-0

de León L, Siverio F, López MM and Rodríguez A. 2008. Comparative efficiency of chemical compounds for in vitro and in vivo activity against Clavibacter michiganensis subsp. michiganensis, the causal agent of tomato bacterial canker. Crop Protection 27(9): 1277-1283. https://doi.org/10.1016/j.cropro.2008.04.004

de León L, Siverio F, López MM and Rodríguez A. 2011. Clavibacter michiganensis subsp. michiganensis a seedborne tomato pathogen: healthy seeds are still the goal. Plant Disease 95(11): 1328-1338. https://doi.org/10.1094/pdis-02-11-0091

Dias VD, Carrer Filho R and Cunha MGD. 2019. Comparison of Leifsonia xyli subsp. xyli molecular detection in heat-treated sugarcane setts1. Pesquisa Agropecuária Tropical 49. https://doi.org/10.1590/1983-40632019v4955132

Dreier J, Meletzus D and Eichenlaub R. 1997. Characterization of the plasmid encoded virulence region pat-1 of phytopathogenic Clavibacter michiganensis subsp. michiganensis. Molecular Plant-Microbe Interactions 10(2): 195-206. https://doi.org/10.1094/mpmi.1997.10.2.195

EFSA PLH Panel (EFSA Panel on Plant Health). 2014. Scientific Opinion on the pest categorisation of Clavibacter michiganensis subsp. michiganensis (Smith) Davis et al. EFSA Journal. https://doi.org/10.2903/j.efsa.2014.3721

Eichenlaub R and Gartemann KH. 2011. The Clavibacter michiganensis subspecies: molecular investigation of gram-positive bacterial plant pathogens. Annual review of phytopathology 49:445-464. https://doi.org/10.1146/annurev-phyto-072910-095258

EPPO. 2016. PM 7/42 (3) Clavibacter michiganensis subsp. michiganensis. EPPO Bulletin 46: 202–225. https://doi.org/10.1111/epp.12302

Félix-Gastélum R, Maldonado-Mendoza IE, Espinoza-Mancillas MG, Leyva-López NE, Martínez-Valenzuela C, Martínez-Álvarez JC and Herrera-Rodríguez G. 2012. Halo-spot and external stem necrosis of tomato caused by Pseudomonas syringae in Sinaloa, Mexico. Phytoparasitica 40(4): 403-412. https://doi.org/10.1007/s12600-012-0242-4

Gartemann KH, Kirchner O, Engemann J, Grafen I, Eichenlaub R and Burger A. 2003. Clavibacter michiganensis subsp. michiganensis: first steps in the understanding of virulence of a Gram-positive phytopathogenic bacterium. Journal of Biotechnology 106(2-3): 179-191. https://doi.org/10.1016/j.jbiotec.2003.07.011

Gartemann KH, Abt B, Bekel T, Burger A, Engemann J, Flügel M, Gaigalat L, Goesmann A, Gräfen I, Kalinowski J, Kaup O, Olaf Kaup, Kirchner O, Krause L, Linke B, Burkhard Linke, McHardy A, Meyer F, Pohle S, Rückert C, Schneiker S, Zellermann EM, Pühler A, Eichenlaub R, Kaiser O and Bartels D. 2008. The genome sequence of the tomato-pathogenic actinomycete Clavibacter michiganensis subsp. michiganensis NCPPB382 reveals a large island involved in pathogenicity. Journal of Bacteriology 190: 2138-2149. https://doi.org/10.1128/jb.01595-07

Gleason ML, Gitaitis RD and Ricker MD.1993. Recent progress in understanding and controlling bacterial canker of tomato in eastern North America. Plant Disease 77: 1069–1076. https://doi.org/10.1094/pd-77-1069

Huang R and Tu JC. 2001. Effects of nutrient solution pH on the survival and transmission of Clavibacter michiganensis subsp. michiganensis in hydroponically grown tomatoes. Plant Pathology 50(4): 503-508. https://doi.org/10.1046/j.1365-3059.2001.00586.x

INFOSTAT. 2003. InfoStat version 1.5. Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina, 232 p.

Jung WJ, Mabood F, Souleimanov A, Whyte LG, Niederberger TD and Smith DL. 2014. Antibacterial activity of antagonistic bacterium Bacillus subtilis DJM-51 against phytopathogenic Clavibacter michiganense subsp. michiganense ATCC 7429 in vitro. Microbial Pathogenesis 77: 13-16. https://doi.org/10.1016/j.micpath.2014.10.008

Kabas A, Boyaci HF, Horuz S, Aysan Y and Ilbi H. 2018. Investigation on identification of new resistant resources to bacterial canker and wilt disease. Feb-Fresenius Environmental Bulletin, 8498.

Klement Z, Mavridis A, Rudolph K, Vidaver A, Perombelon MCM, Moore LW and Rudolph K. 1990. Inoculation of plant tissue. In: Klement Z, Rudolph K, Sands DC. (Eds.), Methods in Phytobacteriology. Akademiai Kiado, Budapest, pp. 99–100.

Lelis FMV, Czajkowski R, de Souza RM, Ribeiro D H and van der Wolf J M. 2014. Studies on the colonization of axenically grown tomato plants by a GFP-tagged strain of Clavibacter michiganensis subsp. michiganensis. European Journal of Plant pathology 139(1): 53-66. https://doi.org/10.1007/s10658-013-0362-9

Lu Y, Hatsugai N, Katagiri F, Ishimaru CA and Glazebrook J. 2015. Putative serine protease effectors of Clavibacter michiganensis induce a hypersensitive response in the apoplast of Nicotiana species. Molecular Plant-Microbe Interactions 28(11): 1216-1226. https://doi.org/10.1094/mpmi-02-15-0036-r

Lyu Q, Bai K, Kan Y, Jiang N, Thapa SP, Coaker G, Li J and Luo L. 2019. Variation in Streptomycin Resistance Mechanisms in Clavibacter michiganensis. Phytopathology 109(11): 1849-1858. https://doi.org/10.1094/phyto-05-19-0152-r

Martínez-Castro E, Jarquin-Gálvez R, Alpuche-Solís, Vallejo-Pérez MR, Colli-Mull JG and Lara-Ávila JP. 2018. Bacterial wilt and canker of tomato: fundamentals of a complex biological system. Euphytica 214: 72. https://doi.org/10.1007/s10681-018-2140-4

McFarland J. 1907. The nephelometer: an instrument for estimating the number of bacteria in suspensions used for calculating the opsonic index and for vaccines. JAMA XLIX: 1176–1178.

McGhee GC and Sundin GW. 2011. Evaluation of kasugamycin for fire blight management, effect on nontarget bacteria, and assessment of kasugamycin resistance potential in Erwinia amylovora. Phytopathology 101(2): 192-204. https://doi.org/10.1094/phyto-04-10-0128

Milijaševi? S, Todorovi? B, Poto?nik I, Rekanovi? E and Stepanovi? M. 2009. Effects of copper-based compounds, antibiotics and a plant activator on population sizes and spread of Clavibacter michiganensis subsp. michiganensis in greenhouse tomato seedlings. Pesticidi i Fitomedicina 24(1): 19-27. https://doi.org/10.2298/pif0901019m

Mirzaee H, Peralta NLN, Carvalhais LC, Dennis PG and Schenk PM. 2021. Plant-produced bacteriocins inhibit plant pathogens and confer disease resistance in tomato. New Biotechnology 63: 54-61. https://doi.org/10.1016/j.nbt.2021.03.003

Muhammad S, Naseerud D, Musharaf A, Ali A, Ishrat N, Alam SS and Najeeb U. 2020. Bioefficacy of some aqueous phytoextracts against Clavibacter michiganensis subsp. michiganensis (Smith), the cause of bacterial canker of tomato. Gesunde Pflanzen 72(3): 207-217. https://doi.org/10.1007/s10343-020-00503-9

Nandi M, Macdonald J, Liu P, Weselowski B and Yuan ZC. 2018. Clavibacter michiganensis ssp. michiganensis: bacterial canker of tomato, molecular interactions and disease management. Molecular Plant Pathology 19(8): 2036-2050. https://doi.org/10.1111/mpp.12678

SADER, 2020. El jitomate, hortaliza mexicana de importancia mundial. Secretaría de Agricultura y Desarrollo Rural. Fecha de publicación 10 de octubre de 2020. https://www.gob.mx/agricultura/articulos/el-jitomate-hortaliza-mexicana-de-importancia-mundial?idiom=es

Savidor A, Teper D, Gartemann KH, Eichenlaub R, Chalupowicz L, Manulis-Sasson S, barash I, Tews H, Mayer K, Giannone RJ, Hettich RL and Seesa G. 2012. The Clavibacter michiganensis subsp. michiganensis–tomato interactome reveals the perception of pathogen by the host and suggests mechanisms of infection. Journal of Proteome Research 11(2): 736-750. https://doi.org/10.1021/pr200646a

Schaad NW, Jones JB and Chun W. 2001. Laboratory Guide for Identi?cation of Plant Pathogenic Bacteria. 3rd edn. St Paul, MN, USA: APS.

Sharabani G, Manulis-Sasson S, Borenstein M, Shulhani R, Lofthouse M, Chalupowicz L and Shtienberg D. 2013a. The significance of guttation in the secondary spread of Clavibacter michiganensis subsp. michiganensis in tomato greenhouses. Plant Pathology 62(3): 578-586. https://doi.org/10.1111/j.1365-3059.2012.02673.x

Sharabani G, Shtienberg D, Borenstein M, Shulhani R, Lofthouse M, Sofer ML, Chalupowicza Barela V and Manulis-Sassona S. 2013b. Effects of plant age on disease development and virulence of Clavibacter michiganensis subsp. michiganensis on tomato. Plant Pathology 62(5): 1114-1122. https://doi.org/10.1111/ppa.12013

Steiner AA. 1984. The universal nutrient solution. In: Proceedings 6th International Congress on Soilless Culture. International Society for Soilless Culture (ed)., Lunteren, Netherlands. pp:633-649.

Stüwe B and von Tiedemann A. 2013. Bacterial canker of tomatoes-histological characterization of cultivar resistance and seed transmission. Journal of Plant Disease and Protection 120(5-6): 194-200. https://doi.org/10.1007/bf03356474

Sundin GW, Castiblanco LF, Yuan X, Zeng Q and Yang CH. 2016. Bacterial disease management: challenges, experience, innovation and future prospects: challenges in bacterial molecular plant pathology. Molecular Plant Pathology 17(9): 1506-1518. https://doi.org/10.1111/mpp.12436

Tancos MA, Chalupowicz L, Barash I, Manulis-Sasson S and Smart CD. 2013. Tomato fruit and seed colonization by Clavibacter michiganensis subsp. michiganensis through external and internal routes. Applied and Environmental Microbiology 79(22): 6948-6957. https://doi.org/10.1128/aem.02495-13

Thapa SP, Pattathil S, Hahn MG, Jacques MA, Gilbertson RL and Coaker G. 2017. Genomic analysis of Clavibacter michiganensis reveals insight into virulence strategies and genetic diversity of a Gram-positive bacterial pathogen. Molecular Plant-Microbe Interaction 30: 786-802. https://doi.org/10.1094/mpmi-06-17-0146-r

Theodoro G and Maringoni AC. 2000. In vitro and in vivo action of chemicals on Clavibacter michiganensis subsp. michiganensis, causal agent of the bacterial canker of tomato. Scientia Agricola 57: 439–443. https://doi.org/10.1590/s0103-90162000000300011

Thyr BD. 1968. Resistance to bacterial canker in tomato, and its evaluation. Phytopathology 58: 279–81.

Valenzuela M, Méndez V, Montenegro I, Besoain X and Seeger M. 2019. Streptomycin resistance in Clavibacter michiganensis subsp. michiganensis strains from Chile is related to an rpsL gene mutation. Plant Pathology 68(3): 426-433. https://doi.org/10.1111/ppa.12971

van Steekelenburg NAM. 1985. Resistance to Corynebacterium michiganense in tomato genotypes. Euphytica 34(2): 245-250. https://doi.org/10.1007/bf00022916

Wassermann E, Montecchia MS, Garaventa VS, Correa OS and Romero AM. 2020. Virulence and pCM1 plasmid carriage are related to BOX?PCR fingerprint type in strains of Clavibacter michiganensis subsp. michiganensis that cause bacterial wilt and canker of tomato in Argentina. Plant Pathology 69(4): 723-732. https://doi.org/10.1111/ppa.13163

Werner NA, Fulbright DW, Podolsky R, Bell J and Hausbeck MK. 2002. Limiting populations and spread of Clavibacter michiganensis subsp. michiganensis on seedling tomatoes in the greenhouse. Plant Disease 86: 535-542. https://doi.org/10.1094/pdis.2002.86.5.535

Yadeta K and Thomma B. 2013. The xylem as battleground for plant hosts and vascular wilt pathogens. Frontiers in Plant Science 4: 97. https://doi.org/10.3389/fpls.2013.00097

Yuqing W, Zhang Y, Zhipeng G and Wencai Y. 2018. Breeding for resistance to tomato bacterial diseases in China: challenges and prospects. Horticultural Plant Journal 4(5): 193-207. https://doi.org/10.1016/j.hpj.2018.08.004




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2106-8

Refbacks

  • There are currently no refbacks.