Microbial genetic resources in food security to face COVID-19 pandemic

Lily Xochilt Zelaya-Molina, Sergio de los Santos-Villalobos, Ismael Fernando Chávez-Díaz, Liliana Carolina Córdova-Albores

Abstract


COVID-19 has had an impact on the regional and worldwide agricultural value chain, jeopardizing food security. It is time to reassess the approach of the agri-food sector and to consider that the food supply and plant health, as agrosystemic services, must depend on strategies with a low impact on productive and environmental assets. One strategy is the use and optimization of microbial genetic resources (MGR) related to agroecosystems as a source of balance, functionality, productivity, inhibition of the impact of pests and pathogens, and contribution to the profitability of agri-food activity. It is necessary to strengthen and develop regional agricultural systems that are dynamic, that mitigate damages to the environment and produce nutritional and nutraceutical foods that ensure human health. Agricultural sciences are undergoing changes in scientific paradigms that will benefit the agri-food sector if we are able to learn from the impacts of an extensive technological agriculture. Approaching agriculture from an agro-systemic point of view in which the crop-community is the functional biological unit of study and to preserve the MGR diversity are the greatest challenges to create sustainable and resilient strategies and technologies that contribute towards human health and help prevent risks during health crises such as the ongoing COVID-19 pandemic.


Keywords


SARS-CoV-2; sustainable agriculture; holobiont; microbial diversity; biodiversity; conservation

Full Text:

PDF

References


Adesemoye AO, Torbert HA and Kloepper JW. 2009. Plant growth-promoting rhizobacteria allow reduced application rates of chemical fertilizers. Microbial Ecololy 58 (4):921-929. https://doi.org/10.1007/s00248-009-9531-y

Alonso-Báez M and Aguirre-Medina JF. 2011. Efecto de la labranza de conservación sobre las propiedades del suelo. Terra Latinoamicana 29 (2):113-121.

Altieri MA and Nicholls CI. 2020. Agroecology and the reconstruction of a post COVID-19 agriculture. The Journal of Peasant Studies 47:881-898. https://doi.org/10.1080/03066150.2020.1782891

Aman F and Masood S. 2020. How nutrition can help to fight against COVID-19 pandemic. Pakistan Journal of Medical Sciences 36(COVID19-S4):S121-S123. 10.12669/pjms.36.COVID19-S4.2776

Antle JM and Ray S. 2020. Pathways to sustainable agricultural development. 167-201 p. In Barret C. (ed) Sustainable Agricultural Development. Palgrave Macmillan, Cham.

Bakhshandeh E, Pirdashti H and Shahsavarpour LK. 2017. Phosphate and potassium-solubilizing bacteria effect on the growth of rice. Ecological Engineering 103:164-169. https://doi.org/10.1016/j.ecoleng.2017.03.008.

Bang A and Khadakkar S. 2020. Opinion: Biodiversity conservation during a global crisis: Consequences and the way forward. Proceedings of the National Academy of Sciences 117 (48):29995-29999. https://doi.org/10.1073/pnas.2021460117

Belkaid Y and Hand T. 2014. Role of the microbiota in immunity and inflammation. Cell 157:121-141. https://doi.org/10.1016/j.cell.2014.03.011.

Berg G, Rybakova D, Fische D, Cernava T, Vergés MCC, Charles T, Chen X, Cocolin L, Eversole K, Corral GH, Kazou M, Kinkel L, Lange L, Lima N, Loy A, Macklin JA, Maguin E, Mauchline T, McClure R, Mitter B, Ryan M, Sarand I, Smidt H, Schelkle B, Roume H, Kiran GS, Selvin J, de Souza RSC, van Overbeek L, Singh BK, Wagner M, Walsh A, Sissitsch A and Schloter M. 2020. Microbiome definition re-visited: old concepts and new challenges. Microbiome. 8:1-22. https://doi.org/10.1186/s40168-020-00875-0

Berendsen RL, Pieterse CMJ and Bakker PAHM. 2012. The rizosphere microbiome and plant health. Trends in Plant Science. 17:478-486. https://doi.org/10.1016/j.tplants.2012.04.001

Bhavani RV and Gopinath R. 2020. The COVID-19 pandemic crisis and the relevance of a farm-system-for-nutrition approach. Food Security. 12:881-884. https://doi.org/10.1007/s12571-020-01071-6

Brown J and Tillier A. 2011. Bridging the gap between genetics and ecology. Annual Review of Phytopatholy 49:345-67. https://doi.org/10.1146/annurev-phyto-072910-095301

Chandra AK Kumar A, Bharati A, Joshi R, Agrawal A, and Kumar S. 2020. Microbial-assisted and genomic-assisted breeding: a two way approach for the improvement of nutritional quality traits in agricultural crops. 3 Biotech 10:2. https://doi.org/10.1007/s13205-019-1994-z

Chávez-Díaz IF, Zelaya-Molina LX, Cruz-Cárdenas CI, Rojas-Anaya E, Ruíz Ramírez S and de los Santos-Villalobos S. 2020. Considerations on the use of biofertilizers as a sustainable agro-biotechnological alternative to food security in Mexico. Revista Mexicana de Ciencias Agrícolas. 11(6):1423-1436. https://cienciasagricolas.inifap.gob.mx/index.php/publicaciones. Consultado diciembre 2020.

Chidambaram V, Tun NL, Haque WZ, Majella MG, Sivakumar RK, Kumar A, et al. 2020. Factors associated with disease severity and mortality among patients with COVID-19: A systematic review and meta-analysis. PLoS ONE 15(11): e0241541. https://doi.org/10.1371/journal.pone.0241541

Córdova-Albores LC, Zelaya-Molina LX, Ávila-Alistac N, Valenzuela-Ruíz V, Cortés-Martínez NE, Parra-Cota FI, Burgos-Canul YY, Chávez-Díaz IF, Fajardo-Franco ML and de los Santos-Villalobos S. 2021. Omics sciences potential on bioprospecting of biological control microbial agents: the case of the Mexican agro-biotechnology. Mexican Journal of Phytopathology 39(1). https://doi.org/10.18781/R.MEX.FIT.2009-3

Cox MJ, Cookson WOCM and Moffatt MF. 2013. Sequencing the human microbiome in health and disease. Human Molecular Genetics. 22:R88-R94. https://doi.org/10.1093/hmg/ddt398

Cucinotta D and Vanelli M. 2020. WHO Declares COVID-19 a pandemic. Acta Biomedica 91(1):157-160. https://doi.org/10.23750/abm.v91i1.9397

Delgado-Baquerizo M, Riech PB, Trivedi C, Eldridge DJ, Abade S, Alfaro FD, Bastida F, Berhe AA, Cutler NA, Gallardo A, García-Velázquez L, Hart SC, Hayes PE, He JZ, Hseu ZY, Hu HW, Kirchmair M, Neuhauser S, Pérez CA, Reed SC, Santos F, Sullivan BW, Trivedi P, Wang JT, Weber-Grullon L, Williams MA and Singh BK. 2020. Multiple elements of soil biodiversity drive ecosystem functions across biomes. Nature Ecology & Evolution. 4:210-220. https://doi.org/10.1038/s41559-019-1084-y

Desmeth P. 2017. The Nagoya Protocol applied to microbial genetic resources. 205-217 p. In Kurtböke I. (ed). Microbial Resources. Academic Press-Elsevier, London, United Kingdom. https://doi.org/10.1016/B978-0-12-804765-1.00010-2.

Dhar D and Mohanty A. 2020. Gut microbiota and COVID-19 possible link and implications. Virus Research. 285:198018. https://doi.org/10.1016/j.virusres.2020.198018

Díaz-Rodríguez AM, Salcedo-Gastelum LA, Félix-Pablos CA, Parra-Cota FI, Santoyo G, Puente ML, Bhattacharya D, Mukherjee J and de los Santos-Villalobos S. 2021. The current and future role of microbial culture collections in food security worldwide. Frontiers in Sustainable Food Systems in press. http://dx.doi.org/10.3389/fsufs.2020.614739

Ecker O, Breisinger C and Pauw K. 2011. Chapter 6: Growth is good, but is not enough to improve nutrition 47-54 p. In: (Eds) Fan y Pandya-Lorch, Reshaping agriculture for nutrition and health. International Food Policy Research Intitute (IFPRI). USA. https://www.ifpri.org/publication/reshaping-agriculture-nutrition-and-health. Consultado diciembre 2020.

FAO. 2017. Towards zero hunger and sustainability. The FAO Multipartner Programme Support Mechanism. http://www.fao.org/documents/card/es/c/fa6a801c-5bd4-4522-a2ff-bfbef1e56529/. Consultado diciembre 2020.

FAO. 2019. The state of the world’s biodiversity for food and agriculture (Rome, Italy: FAO), 572p. http://www.fao.org/3/CA3129EN/ca3129en.pdf.

FAO. 2020a. Novel Coronavirus (COVID-19). http://www.fao.org/2019-ncov/q-and-a/en/. Consultado diciembre 2020.

FAO. 2020b. World Food Situation: FAO food price index. http://www.fao.org/worldfoodsituation/foodpricesindex/en/. (Consulta, diciembre 2020).

FAO. 2020c. Food systems and COVID-19 in Latin America and the Caribbean: Contingency plan for an eventual food supply crisis. Bulletin 6. Santiago, FAO. https://doi.org/10.4060/ca9333en. Consulto diciembre 2020.

FAO, FIDA, OMS, PMA y UNICEF. 2020. Versión resumida de El estado de la seguridad alimentaria y la nutrición en el mundo 2020. Transformación de los sistemas alimentarios para que promuevan dietas asequibles y saludables. Roma, FAO. https://doi.org/10.4060/ca9699es. Consultado febrero 2021.

Francis D. 2020. Agriculture, climate change and COVID-19. IICABlog. https://blog.iica.int/en/blog/agriculture-climate-change-and-covid-19. Consultado octubre 2020.

Goicochea N and Antolín MC. 2017. Increased nutritional value in food crops. Microbial biotechnology. 10:1004-1007. doi: 10.1111/1751-7915.12764

Griebler C and Abramov M. 2015. Groundwater ecosystem services: a review. Freshwater Science. 34:355-367. https://doi.org/10.1086/679903.

Haleem A and Javaid M. 2020. Effects of COVID-19 pandemic in daily life. Current Medicine Research and Practice 10:78-79. https://doi.org/10.1016/j.cmrp.2020.03.011

Hassani MA, Durán P and Hacquard S. 2018. Microbial interactions within the plant holobiont. Microbiome. 6:1-17. https://doi.org/10.1186/s40168-018-0445-0

Hossain I, Aktaruzzaman MM, Khan MH and Mullick AR. 2020. A converse association: how biodiversity and wildlife connected with COVID-19. European Journal of Pharmaceutical and Medical Research 7 (10): 209-214. https://www.ejpmr.com/home/abstract_id/7326.

Heller NE and Zavaleta ES. 2009. Biodiversity management in the face of climate change: A review of 22 years of recommendations. Biological Conservation 142:14-32. https://doi.org/10.1016/j.biocon.2008.10.006

Henry R. 2020. Innovations in agriculture and food supply in response to the COVID-19 pandemic. Molecular Plant 13:1095-1097. https://doi.org/10.1016/j.molp.2020.07.011.

Horrigan L, Lawrence RS and Walker P. 2002. How sustainable agriculture can address the environmental and human health harms of industrial agriculture. Environmental Health Perspectives 110 (5):445-456. doi: 10.1289/ehp.02110445

Infusino F, Marazzato M, Mancone M, Fedele F, Mastroiannni CM, Severino P, Ceccarielli G, Sntinelli L, Cavarretta E, Marullo AGM, Miraldi F, Carnevale R, Nocella C, Biondi-Zoccai G, Pagnini C, Schiavon S, Pugliese F, Frati G and d’Ettorre G. 2020. Diet supplementation, probiotics, and nutraceuticals in SARS-CoV-2 Infection: A scoping review. Nutrients 12:1718. https://doi.org/10.3390/nu12061718

Khan N, Naseem Siddiqui B, Khan N, Ullah N, Wali A, Uddin Khan I, Ismail S and Ihtisham M. 2020. Drastic impacts of COVID-19 on food, agriculture and economy. Pure and Applied Biology 10 (1):62-68. http://dx.doi.org/10.19045/bspab.2021.100008

Khoury C, Laliberte´ B and Guarino L. (2010) Trends in ex situ conservation of plant genetic resources: a review of global crop and regional conservation strategies. Genetic Resources and Crop Evolution 57 (4): 625–639. https://doi.org/10.1007/s10722-010-9534-z

Lata RK, Divjot K and Nath YA. 2019. Endophytic microbiomes: biodiversity, ecological significance and biotechnological applications. Research Journal of Biotechnology 14:143-162. https://www.semanticscholar.org/paper/Paper-%3A-Endophytic-Microbiomes-%3A-Biodiversity-%2C-and-Lata-Divjot/b3845600266b2d2fad531f7e0a66d2da86f9d957

Legrand F, Picot A, Cobo-Díaz JF, Carof M, Chen W and Le Floch G. 2018. Effect of tillage and static abiotic soil properties on microbial diversity. Applied Soil Ecology 132:135-145. https://doi.org/10.1016/j.apsoil.2018.08.016

Marsden T and Smith E. 2005. Ecological entrepreneurship: sustainable development in local communities through quality food production and local branding. Geoforum. 36(4):440-451. https://doi.org/10.1016/j.geoforum.2004.07.008.

Marlow S. 2020. COVID-19: Effects on the Fertilizer Industry. IHS Market 24(3): 2-6. https://ihsmarkit.com/research-analysis/report-covid19-effects-on-the-fertilizer-industry.html. Consultado diciembre 2020.

Martínez-Blanco J, Lazcano C, Christensen TH, Muñoz P, Rieradevall J, Møller J, Antón A, and Boldrin A. 2013. Compost benefits for agriculture evaluated by life cycle assessment. A review. Agronomy for Sustainable Development 33 (4):721-732. https://doi.org/10.1007/s13593-013-0148-7

Matveeva T, Provorov, N and Valkonen J. 2018. Editorial: Cooperative adaptation and evolution in plant-microbiome system. Frontiers in Plant Science 9 (1090). https://doi.org/10.3389/fpls.2018.01090

McDonald B. 2004. Population genetics of plant pathogens. Zurich, Switzerland: Institute of Plant Science/Pathology. https://doi.org/10.1094/PHI-A-2004-0524-01

Mercado-Mercado G, Blancas-Benítez F, Zamora-Gasga VM and Sáyago-Ayerdi SG. 2020. Mexican traditional plant-foods: polyphenols bioavailability, gut microbiota metabolism and impact in human health. Current Pharmaceutical Design 25:3434-3456. https://doi.org/10.2174/1381612825666191011093753

Mishra PK, Joshi S, Gangola S, Khati P, Bisht JK and Pattanayak A. 2020. Psychrotolerant Microbes: Characterization, conservation, strain improvements, mass production, and commercialization. 227-246 p. In Goel R., Soni R. and Suyal DC (eds). Microbiological Advancements for Higher Altitude Agro-Ecosystems & Sustainability. Springer, Singapore. https://doi.org/10.1007/978-981-15-1902-4_1

Neupane D. 2020. How conservation will be impacted in the COVID-19 pandemic. Wildlife Biology 2020. https://doi.org/10.2981/wlb.00727

Olesen SW, and Alm EJ. 2016. Dysbiosis is not an answer. Nature Microbiology 1:16228. https://doi.org/10.1038/nmicrobiol.2016.228

Park W. 2018. Gut microbiomes and their metabolites shape human and animal health. Journal of Microbiology 56:151-153. https://doi.org/0.1007/s12275-018-0577-8

Patle GT, Kharpude SN, Dabral PP, and Kumar V. 2020. Impact of organic farming on sustainable agriculture system and marketing potential: A review. International Journal of Environment and Climate Change 10 (11): 100-120. https://doi.org/10.9734/IJECC/2020/v10i1130270

Pilling D, Bélanger J, Diulgheroff S, Koskela J, Leroy G, Mair G, and Hoffmann I. 2020. Global status of genetic resources for food and agriculture: challenges and research needs. Genetic Resources 1 (1):4-16. https://doi.org/10.46265/genresj.2020.1.4-16

Power AG. 2010. Ecosystem services and agriculture: tradeoffs and synergies. Phylosophical Transactions of the Royal Society 365:2959-2971. https://doi.org/10.1098/rstb.2010.0143

Robles-Montoya RI, Chaparro-Encinas LA, Parra-Cota FI, and de los Santos-Villalobos S. 2020. Improving biometric traits of wheat seedlings with the inoculation of a consortium native of Bacillus. Revista Mexicana Ciencias Agrícolas 11(1): 229-235. https://doi.org/10.29312/remexca.v11i1.2162

Rojas-Padilla J, Chaparro-Encinas LA, Robles-Montoya RI, and de los Santos-Villalobos S. 2020. Growth promotion on wheat (Triticum turgidum L. subsp. durum) by coinoculation of native Bacillus strains isolated from the Yaqui Valley, Mexico. Nova Scientia 12 (1): 1-27. https://doi.org/10.21640/ns.v12i24.2136.

Sahu N, Vasu D, Sahu A, Lal N, and Singh SK. 2017. Strength of microbiomes in nutrient cycling: a key to soil health. 69-86 p. In Meena et al. (eds) Agriculturally important microbes for sustainable agriculture. Springer Nature Singapore. https://doi.org/10.1007/978-981-10-5589-8_4

Saleem M, Hu J, and Jousset A. 2019. More than the sum of its parts: microbiome biodiversity as driver of plant growth and soil health. Annual Reviews of Ecology, Evolution and Systematics 50:145-168. https://doi.org/10.1146/annurev-ecolsys-110617-062605

Sandoval-Cancino G, Zelaya-Molina LX, Ruíz-Ramírez S, Cruz-Cárdenas CI, Aragón-Magadán MA, Rojas-Anaya E, Chávez-Díaz IF. 2022. Agricultural genetic resources as a source of resilience in the face of the COVID-19 pandemic in Mexico. Tropical and Subtropical Agroecosystems. 25(2022):006. https://www.revista.ccba.uady.mx/ojs/index.php/TSA/article/view/3841. Consultado octubre 2021.

Sharma SK, Singh SK, Ramesh A, Sharma PK, Varma A, Ahmad E, Khande R, Singh UB, and Saxena AK. 2018. Microbial genetic resources: status, conservation, and access and benefit-sharing regulations.1-33 p. In Sharma SK and Varma A (eds). Microbial Resource Conservation. Soil Biology, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-319-96971-8_1

Singh A, Kumari R, Yadav AN, Mishra S, Sachan A, and Sachan SG. 2020. Chapter 1: Tiny microbes, big yields: Microorganisms for enhancing food crop production for sustainable development. 1-15 p. In Rastegari et al. (eds). New and Future Developments in Microbial Biotechnology and Bioengineering, Elsevier. https://doi.org/10.1016/B978-0-12-820526-6.00001-4.

Singh BK, and Trivedi P. 2017. Microbiome and the future for food and nutrient security. Microbial Biotechnology 10 (1):50. https://doi.org/10.1111/1751-7915.12592

Soltanighias T, Vaid RK, and Rahi P. 2018. Agricultural microbial genetic resources: application and preservation at microbial resource centers. 141-173 p. In Sharma SK and Varma A. (eds). Microbial Resource Conservation. Soil Biology, vol 54. Springer, Cham. https://doi.org/10.1007/978-3-319-96971-8_

Song SJ, Woodhams DC, Martino C, Allaband C, Mu A, Javorschi-Miller-Montgomery S, Suchodolski JS, and Knight R. 2019. Engineering the microbiome for animal health and conservation. Experimental Biology and Medicine, 244 (6):494-504. https://doi.org/10.1177/1535370219830075.

Stanisavljevic N, Bajic SS, Jovanovic Z, Matic I, Tolinacki M, Popovic D, Popovic N, Terzic-Vidojevic A, Golic N, Beskoski V, and Samardzic J. 2020. Antioxidant and antiproliferative activity of allium ursinum and their associated microbiota during simulated in vitro digestion in the presence of food matrix. Frontiers in Microbiology 11:601616. https://doi.org/10.3389/fmicb.2020.601616

Subedi R, Karki M, and Panday D. 2020. Food system and water-energy-biodiversity nexus in Nepal: A review. Agronomy 10 (8):1129. https://doi.org/10.3390/agronomy10081129

Sung B, and Hwang K. 2017. Promoting the utilization of plant, animal and microbial genetic resources for research and development in biotechnology: evidence on researchers' preferences for specific attributes from Korean genebanks. Plant Genetic Resources 15 (3):195-207. https://doi.org/10.1017/S1479262115000520

Thanner S, and Drissner D, Walsh F. 2016. Antimicrobial resistance in agriculture. MBio 7:e02227-15. https://doi.org/10.1128/mBio.02227-15

Thrall P, Oakeshott J, Fitt G, Southerton S, Burdon J, Sheppard A, Russell RJ, Zalucki M, Heino M, and Ford-Deison R. 2011. Evolution in agriculture: the applicaation of evolutionary approaches to the management of biotic interactions in agroecosystems. Evolutionary Applications 4:200-215. https://doi.org/10.1111/j.1752-4571.2010.00179.x

Thomashow LS, LeTourneau MK, Kwak YS, and Weller DM. 2019. The soil-borne legacy in the age of the holobion. Microbial Biotechnology 12:51-54. https://doi.org/10.1111/1751-7915.13325

Tooker J, O'Neal M, and Rodríguez-Saona C. 2020. Balancing disturbance and conservation in agroecosistems to improve biological control. Annual Review of Entomology 65 (2020):81-100. https://doi.org/10.1146/annurev-ento-011019-025143

Turnbaugh PJ, Ley RE, Hamady M, Fraser-Liggett CM, Knight R, and Gordon JI. 2007. The human microbiome project. Nature 449:804-810. https://doi.org/10.1038/nature06244

Trivedi P, Leach JE Tringe SG, Sa T, and Singh BK. 2020. Plant-microbiome interactions: form community assembly to plant health. Nature Reviews Microbiology 18:607-621. https://doi.org/10.1038/s41579-020-0412-1

Siche R. 2020. What is the impact of COVID-19 disease on agriculture? Scientia Agropecuaria. 11 (1):3-6. https://doi.org/10.17268/sci.agropecu.2020.01.00

Simon JC, Marchesi JR, Mougel C, and Selosse MA. 2019. Host-microbiota interactions: from holobiont theory to analysis. Microbiome. 7:1-5. https://doi.org/10.1186/s40168-019-0619-4

Usher K, Durkin J, and Bhullar N. 2020. The COVID?19 pandemic and mental health impacts. International Journal of Mental Health Nursing 29 (3): 3-15. https://doi.org/10.1111/inm.12726

Valenzuela-Aragón B, Parra-Cota FI, Santoyo G, Arellano-Wattenbarger GL, and de los Santos-Villalobos S. 2019. Plant-assisted selection: a promising alternative for in vivo identification of wheat (Triticum turgidum L. subsp. durum) growth promoting bacteria. Plant and Soil 435: 367–384. https://doi.org/10.1007/s11104-018-03901-1

Valenzuela-Ruiz V, Ayala-Zepeda M, Arellano-Wattenbarger GL, Parra-Cota FI, García-Pereyra J, Aviña-Martínez GN, and de los Santos-Villalobos S. 2018. Microbial culture collections and their potential contribution to current and future food security. Revista Latinoamericana de Recursos Naturales 14 (1):18-25. https://www.itson.mx/publicaciones/rlrn/Documents/v14-n1-3.pdf. Consultado diciembre 2020.

Villarreal-Delgado MF, Villa-Rodríguez ED, Cira-Chávez LA, Estrada-Alvarado MI, Parra-Cota FI, and de los Santos-Villalobos S. 2017. The genus Bacillus as a biological control agent and its implications in the agricultural biosecurity. Revista Mexicana de Fitopatología 36 (1):95-130. https://doi.org/10.18781/R.MEX.FIT.1706-5

Wagg C, Bender F, Widmer F, and van der Heijden MGA. 2014. Soil biodiversity and soil community composition determine ecosystem multifunctionality. Proceedings of the National Academy of Sciences 111:5266-5270. https://doi.org/10.1073/pnas.1320054111

Wall DH, Nielsen UN, and Six J. 2015. Soil biodiversity and human health. Nature 528:69-76. https://doi.org/10.1038/nature15744

Wei Z, Gu Y, Friman VP, Kowalchuk GA, Xu Y, Shen Q, and Jousset A. 2019. Initial soil microbiome composition and functioning predetermine future plant health. Science Advances 5:1-11. https://doi.org/10.1126/sciadv.aaw0759

Whipps J, Lewis K, and Cooke R. 2001. Mycoparasitism and plant disease control. 161-187 p. In Burge M (ed)r. Fungi Biol Control Syst. Manchester University Press.

Zhan J. 2016. Population genetics of plant pathogens. In B. McDonald (ed.). eLS. John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470015902.a0021269.pub2

Zhang J, van der Heijden MGA, Zhang F, and Bender F. 2020. Soil biodiversity and crop diversification are vital components of healthy soils and agricultural sustainability. Frontiers of Agricultural Science and Engineering 7:236-242. https://doi.org/10.15302/J-FASE-2020336




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2021-7

Refbacks

  • There are currently no refbacks.