Potassium silicate as a fungicide enhancer against Botrytis cinerea in blackberry

Daniel Nieto-Angel, José Terrones-Salgado, Santo Ángel Ortega-Acosta, Candelario Ortega-Acosta, Daniel Téliz-Ortiz, Francisco Javier Sánchez-Ruiz, Moisés Roberto Vallejo-Pérez, Francisco Palemón-Alberto, Luis Daniel Ortega-Martínez

Abstract


Blackberry gray mold, induced by Botrytis cinerea, is a fruit disease that causes important economic losses. The present study evaluated nine fungicides belonging to different chemical groups, alone and in combination with potassium silicate, using the dose recommended on the label for the control of B. cinerea in the field. The incidence and severity of the disease were evaluated, as well as the degrees Brix, silicon concentration, and yield. The experiment was carried out twice. Incidence and severity percentages were converted to area under the disease progress curve (AUDPC). Combined with potassium silicate, the fungicide azoxystrobin significantly reduced incidence and severity, showing the lowest percentages in the last evaluation of these variables. In the first repetition, the incidence and severity values were 4% (AUDPC = 1320) and 0.1% (AUDPC = 298.5), respectively. In the second, 3% (AUDPC = 1099) and 0.1% (AUDPC = 214.5) respectively. The concentration of soluble solids and fruit yield increased (12.4 and 13.6 t ha-1 in the first and second repetition, respectively). The results indicate that potassium silicate enhances the effect of fungicides under field conditions and can thus be considered a management alternative against the gray mold disease in blackberries.


Keywords


Silicon; AUDPC; incidence; severity; fungicides

Full Text:

PDF

References


Abd-Alkarim E, Bayoumi Y, Metwally E and Rakha M. 2017. Silicon supplements affect yield and fruit quality of cucumber (Cucumis sativus L.) grown in net houses. African Journal of Agricultural Research 12 (31):2518-2523. https://doi.org/10.5897/ajar2017.12484

Ahmad H, Sajjid M, Hayat S, Ullah R, Ali M, Jamal A, Rahman A, Aman Z and Ali J. 2017. Growth, yield and fruit quality of strawberry (Fragaria ananasa Dutch) under different phosphorus levels. Research in Agriculture 2 (2):19-28. http://dx.doi.org/10.22158/ra.v2n2p19

Alcántar GG and Sandoval VM. 1999. Manual de análisis químico de tejido vegetal. Publicación Especial No. 10. SMCS. Chapingo, México. 150 p

Aneberries. 2021. Asociación Nacional de Exportadores de Berries A.C. https://www.aneberries.mx/ (Consulta, febrero 2022).

Bélanger RR, Benhamou N and Menzies JG. 2003. Cytological evidence of an active role of silicon in wheat resistance to powdery mildew (Blumeria graminis f. sp. tritici). Phytopathology 93:402–412. https://doi.org/10.1094/phyto.2003.93.4.402

Calvo-Garrido C, Viñas I, Elmer PA, Usall J and Teixidó N. 2014. Suppression of Botrytis cinerea on necrotic grapevine tissues by early season applications of natural products and biocontrol agents. Pest Management Science 70 (4):595–602. https://doi.org/10.1002/ps.3587

Carisse O, Tremblay DM and Lefebvre A. 2015. Comparison of Botrytis cinerea airborne inoculum progress curves from raspberry, strawberry and grape plantings. Plant Pathology 63(5):983–993. https://doi.org/10.1111/ppa.12192

Datnoff LE, Snyder GH and Korndörfer GH. 2011. Silicon in Agriculture. Studies in Plant Science, 8. Florida, USA. 403p. http://dx.doi.org/10.1016/S0928- 3420(01)80001-X

Fauteux F, Rémus BW and Menzies JG. 2005. Silicon and plant disease resistance against pathogenic fungi. FEMS Microbiology Letters 249:1–6. https://doi.org/10.1016/j.femsle.2005.06.034

Fernández-Ortuño D, Grabke A, Bryson PK, Amiri A, Peres NA and Schnabel G. 2014. Fungicide resistance profiles in Botrytis cinerea from strawberry fields of seven southern U.S. states. Plant Disease 98:825-833. https://doi.org/10.1094/PDIS-09-13-0970-RE

Fillinger S and Walker AS. 2016. Chemical Control and Resistance Management of Botrytis Diseases. Pp: 189-216. In. Fillinger S and Elad Y (eds.), Botrytis – the Fungus, the Pathogen and its Management in Agricultural Systems. Springer Cham Heidelberg New York Dordrecht London. 486p. https://doi.org/10.1007/978-3-319-23371-0

Guntzer F, Keller C and Meunier JD. 2012. Benefits of plant silicon for crops: a review. Agronomy for Sustainable Development 32:201–213. https://doi.org/10.1007/s13593-011-0039-8

Hanafy AAH, Harb EM, Higazy MA and Morgan SH. 2008. Effect of silicon and boron foliar applications on wheat plants grown under saline soil conditions. International Journal of Agricultural Research 3:1-26. https://doi.org/ 10.3923/ijar.2008.1.26

Haynes RJ, Belyaeva ON and Kingston G. 2013. Evaluation of industrial wastes as sources of fertilizer silicon using chemical extractions and plant uptake. Journal of Plant Nutrition Soil Science 176:238–248. https://doi.org/10.1002/jpln.201200372

Iwasaki K, Maier P, Fecht M and Horts JW. 2002. Effects of silicon supply on apoplastic manganese concentrations in leaves and their relation to manganese tolerance in cowpea (Vigna unguiculata (L.) Walp.). Plant and Soil 238(2):281–288. https://doi.org/10.1023/A:1014482911196

Jarosz Z. 2012. The effect of silicon application and type of substrate on yield and chemical composition of leaves and fruit of cucumber. Journal of Elementology 5:403-414. https://doi.org/10.5601/jelem.2013.18.3.05

Jennings DH. 2007. The Physiology of Fungal Nutrition. Cambridge University Press. New York, USA. 622p. https://doi.org/10.1007/BF02908824

Li XP, Kerrigan J, Chai W and Schnabel G. 2012. Botrytis caroliniana, a new species isolated from blackberry in South Carolina. Mycologia 104(3):650-658. https://doi.org/10.3852/11-218

Lopes UP, Zambolim L, Costa H, Pereira OL and Finger FL. 2014. Potassium silicate and chitosan application for gray mold management in strawberry during storage. Crop Protection 63:103–106. https://doi.org/10.1016/j.cropro.2014.05.013

Lu DMM, De Silva MR, Peralta EK, Fajardo AN and Peralta MM. 2016. Growth and yield of tomato applied with silicon supplements with varying material structures. Philippine e-Journal for Applied Research and Development 6:10-18. http://pejard.slu.edu.ph/vol.6/2016.03.30.pdf

Marodin JC, Resende JT, Morales RG, Silva ML, Galvao AG and Zanin DS. 2014. Yield of tomato fruits in relation to silicon sources and rates. Horticultura Brasileira 32(2): 220-224. https://doi.org/10.1590/S0102-05362014000200018

Osada VHK and Mora AG. 1997. 2LOG. Programa para desarrollar escalas de severidad por el método de Horsfall y Barratt. Manual del Usuario. Montecillo, Estado de México, Colegio de Postgraduados

Ouellette S, Coyette MH, Labbé C, Laur J, Gaudreau L, Gosselin A and Belanger RR. 2017. Silicon transporters and effects of silicon amendments in strawberry under high tunnel and field conditions. Frontiers in Plant Science 8:949. https://doi.org/10.3389/fpls.2017.00949

Pilon C, Soratto RP and Moreno LA. 2013. Effects of soil and foliar application of soluble silicon on mineral nutrition, gas exchange, and growth of potato plants. Crop Science 53(4): 1605-1614. https://doi.org/10.2135/cropsci2012.10.0580

Rodrigues AF and Datnoff LE. 2015. Silicon and Plant Disease. Springer. Cham Heidelberg New York Dordrecht London. 148 p. https://doi.org/10.1007/978-3-319-22930-0

SAS Institute. 2002. SAS User’s Guide: Statistics, Version 9.0. SAS Institute. Cary, NC.

Savvas D, Giotis D, Chatzieustratiou E, Bakea M and Patakioutas G. 2009. Silicon supply in soilless cultivations of zucchini alleviates stress induced by salinity and powdery mildew infections. Environmental and Experimental Botany 65:11–17. https://doi.org/10.1016/j.envexpbot.2008.07.004

Terrones SJ, Nieto AD, Nava DC, Téliz OD, García VR, Vallejo PMR and Sánchez GP. 2019. Botrytis cinerea causing gray mold in blackberry fruit in Mexico. Mexican Journal of Phytopathology 37(3):365-382 https://doi.org/10.18781/r.mex.fit.1906-1.

Toresano SF, Valverde GA and Camacho F. 2012. Effect of the Application of Silicon Hydroxide on Yield and Quality of Cherry Tomato. Journal of Plant Nutrition 35(4): 567-590. https://doi.org/10.1080/01904167.2012.644375

Tovar SA, Hernández MM, Cristobal AJ, Romero HR y Mora AG. 2002. Escala logarítmica diagramática de severidad de la mancha negra (Colletotrichum gloeosporioides Penz.) en Chirimoyo (Annona cherimola Mill). Revista Mexicana de Fitopatología 20:103-109. http://www.redalyc.org/articulo.oa?id=61220117

Villani SM and Cox KD. 2014. Heteroplasmy of the cytochrome b gene in Venturia inaequalis and its involvement in quantitative and practical resistance to trifloxystrobin. Phytopathology 104(9):945–953. https://doi.org/10.1094/PHYTO-06-13-0158-R.




DOI: http://dx.doi.org/10.18781/R.MEX.FIT.2202-4

Refbacks

  • There are currently no refbacks.